
A BATMAN Testbed with
Assisted Deployment and Metric

Measurement

Project Report
Group 20gr550

Aalborg University
Department of Electronic Systems

Fredrik Bajers Vej 7B
DK-9220 Aalborg Ø

Department of Electronic Systems
Fredrik Bajers Vej 7B

DK-9220 Aalborg Ø
https://es.aau.dk

Title:
A BATMAN Testbed with Assisted Deploy-
ment and Metric Measurement

Theme:
Complex Distributed Systems

Project Period:
Fall semester 2020

Project Group:
20gr550

Participants:
Frederik Rentzø Fagerlund
Julian Jørgensen Teule
Marius Frilund Hensel
Nicholas Bernth Strømgaard Hansen
Victor Büttner

Supervisors:
Sebastian Bro Damsgaard
Tatiana Kozlova Madsen

Copies:

Number of Pages: 90

Date of Completion:
December 18, 2020

Abstract:

Mesh routing allows for multi-hop ad-
hoc networks avoiding reliance on exist-
ing infrastructure. However, mesh net-
work routing is not easy. Multiple rout-
ing algorithms have been proposed and
multiple implementations have been cre-
ated. This report investigates the possi-
bility of developing a testbed for the mesh
network routing protocol BATMAN. The
testbed was developed with the goal of as-
sisted deployment of a BATMAN network
and continuously collecting data. A de-
ployment system was used for assisted de-
ployments, and a tracker was developed
which collects both local BATMAN state
and headers from packets sent by each
node. In order to verify the applicability of
the system, multiple tests were conducted.
Using the deployment system proved suc-
cessful for getting a working testbed run-
ning with nodes using BATMAN, as well
as the developed tracking software. Once
the testbed was deployed, three of four se-
lected scenarios could be recreated, data
could be collected throughout, and met-
rics could be calculated from this data.

This report is freely available, but publication (with reference) may only be pursued due to agreement with
the author. The source code to any program can be found on https://github.com/COMTEK550 .

https://es.aau.dk
https://github.com/COMTEK550

Nomenclature

Abbreviation Meaning

ACID Atomic, Durable, Isolated, Consistent
alfred Almighty Lightweight Fact Remote Exchange Daemon
API Application Programming Interface
AS Autonomous System
BATMAN Better Approach To Mobile Ad-hoc Networking
CIDR Classless Inter-Domain Routing
CLI Command Line Interface
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
HTTP Hypertext Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ISP Internet Service Provider
IX Internet Exchange
JSON JavaScript Object Notation
JSONL JavaScript Object Notation Lines
LL Link Local
LLC Logical Link Control
MAC Media Access Control
MTU Maximum Transmission Unit
NTP Network Time Protocol
OGM Originator Message
OLSR Optimized Link State Routing Protocol
OOP Object-Oriented Programming
OS Operating System
OSI Open Systems Interconnection
PDF Portable Document Format
PTP Precision Time Protocol
RFC Request for Comments
RREQ Route Request Packets
RTT Round-Trip Time
SHA Secure Hash Algorithm
SQL Structured Query Language
SSH Secure Shell
TCP Transmission Control Protocol
txpower transmission power

v

Group 19gr352

TQ Transmission Quality
TT Translation Table
VPN Virtual Private Network
YAML YAML Ain’t Markup Language

vi

Contents

Nomenclature v

Contents vii

Preface ix

1 Introduction 1
1.1 Mesh Networks . 2
1.2 Assessing BATMAN . 3
1.3 Initial Problem Statement . 4

2 Problem Analysis 5
2.1 Introduction to BATMAN . 5
2.2 Related Work . 7
2.3 Test Scenarios . 10
2.4 batadv-vis and alfred . 13
2.5 Desired Capabilities . 16
2.6 Final Problem Statement . 17

3 Requirement Specification 19

4 Design 21
4.1 Network . 21
4.2 Deploy Node . 22
4.3 Golden Image . 23
4.4 Tracker . 23
4.5 Clock Synchronization . 24
4.6 Link Quality . 26
4.7 Summary . 27

5 Implementation 29
5.1 Hardware . 30
5.2 Deployer . 30
5.3 Battracker . 40
5.4 Deblobber & Storage . 47
5.5 Visualizer . 51

6 Test 55
6.1 Test setups . 55
6.2 Test of Requirements . 55
6.3 Summary of tests . 68

vii

Group 19gr352 Contents

7 Discussion 69

8 Conclusion 71

Bibliography 73

A Additional test scenarios 77

B batadv-vis DOT output 79

C batadv-vis DOT output 81

D Convergence Speed Topologies 83

E Class Diagram Of Tracker 85

F Commands 87
F.1 Source node . 87
F.2 Destination node . 88

viii

Preface

The "BATMAN" term is used to encompass both the BATMAN IV routing protocol and
its leading implementation, batman-adv. Other versions of the BATMAN routing protocol
such as BATMAN V will be referred to as such.

If something is left out in the middle of a snippet [SNIP] is used, for instance:

1 int get_the_thing() {
2 [SNIP]
3 return thething;
4 }

Frederik Fagerlund
<ffager18@student.aau.dk>

Julian Teule
<jteule18@student.aau.dk>

Marius Hensel
<mhense15@student.aau.dk>

Nicholas Hansen
<nbsh18@student.aau.dk>

Victor Büttner
<vbattn18@student.aau.dk>

Aalborg University, December 18, 2020

ix

mailto:ffager18@student.aau.dk
mailto:jteule18@student.aau.dk
mailto:mhense15@student.aau.dk
mailto:nbsh18@student.aau.dk
mailto:vbattn18@student.aau.dk

Introduction 1
The internet these days is indispensable for most people, which in turn means that large
amounts of resources and infrastructure are used to ensure a fast and stable network
connection for people and companies around the world. However in some situations
the infrastructure of the internet is sometimes not present or desired. Examples of
such situations are natural disasters where infrastructure has been destroyed, or military
operations which might have demands for performance or privacy. A potential solution
to this could be establishing a decentralized network, that could act as a temporary
alternative to the internet. Such a network will be referred to as an ad-hoc network as it
is not reliant on existing infrastructure.

An ad-hoc network could also be a substitute for the more centralised networks of today,
removing the reliance on ISPs (Internet Service Provider). ISP controlled networks are
often unwanted because of the censoring, control, and surveillance which can be placed on
its users. One example of a working ad-hoc network is the non-commercial free network
deployed by Freifunk. The Freifunk network is seemingly the largest instance of such
a deployment with more than 34 000 active nodes split among 310 sub-communities as
of 2016. It is an entirely volunteer-driven project that seeks to live up to the original
design goals of the internet with a redundant, distributed, open, and neutral network. In
addition, Freifunk is also free of charge (gratis) and mostly free as in freedom (libre). [1]

These decentralised networks mentioned above often utilize wireless technology to connect
devices as it is seemingly simpler to setup and maintain than wired connections. In order
to extend the often limited range of wireless technologies, devices must work together to
route other devices’ data. Network packets can then travel large distances being forwarded
by multiple intermediate nodes which are also users of the network themselves. This will
be referred to as mesh network.

Contrary to mesh networks, the internet utilizes dedicated infrastructure for routing user
network packets. Oftentimes a user pays for the internet, which means that some reliance is
placed on the infrastructure to have the data forwarded both to and from the device used.
In most mesh networks the user must trust other devices to forward the data correctly,
Through a mesh network routing algorithm could make incentives for forwarding other
users’ data.

Both mentioned networks use multi-hop to forward data to the desired destination. One
challenge with mesh networks is the routing algorithm used to allow cooperation between
nodes. As such, mesh networks and the routing required to make it work will be explored.

1

Group 19gr352 1. Introduction

1.1 Mesh Networks

Ad-hoc describes independence from existing infrastructure in a network, and mesh
describes a topology where data is forwarded by other participating nodes. This is in
contrast to networks with a star topology where a node hierarchy exists, in the form of a
central node controlling all communication. One of the main drawbacks and characteristics
of a star topology is the reliance on a central node, as the network cannot exists without
the central node being online.

On the contrary, mesh networks are typically designed to be able to survive any node
being down, by dynamically changing network behavior on network changes, as nodes join
or leave. This is achieved with routing protocols which determine how nodes exchange
network information and how this information is used to route packages. Mesh routing
protocols are measured according to their ability to adapt to nodes going offline, moving,
or new nodes being added and their speed at doing so.

This adaptive routing is a problem as there is no central authority, so information needed
for routing might not be available to all nodes. The simplest approach is for every node
to rebroadcast every new message, meaning each message is flooded through the network.
This method, which is called flooding, scales badly with larger networks as it utilizes
network infrastructure badly.

An optimization would be to route packets along a calculated path, instead of distributing
it to every node in the network. Determining this path often requires information about
how nodes connect in the network, which must be distributed between nodes. This
information exchange can be done on demand with a special route request packet which
can utilize flooding to find a route to a target node. These routes can be cached for later
usage, to minimize route requests and other control traffic. This routing approach is called
reactive or on-demand routing as network information is found when needed.

Another approach is for nodes to constantly exchange network information about online
nodes and where they are in the network. This has the advantage that packets can be
sent immediately as each node always has the needed information available to it. However
for quickly changing networks such as mobile networks information can quickly become
outdated, which will cause packets to take inefficient or incorrect routes. This can be
partially solved by sending network updates more quickly. This proactive exchange of
network information gives this approach its name table-driven or proactive routing.

In terms of routing protocols for mesh networks multiple solutions exist using methods
described earlier i.e. reactive and proactive, and sometimes a hybrid between the two.
One of the more modern proactive routing protocols is BATMAN.

The previously mentioned Freifunk started to work on the BATMAN protocol in 2008
[2, 3] (or 2006 according to another source [4, 5]). In 2016 it was the protocol used by
the majority of the Freifunk network [1]. With the intent to create a scalable protocol to
route large interconnected mesh networks, BATMAN was created as a proactive routing
protocol. It was meant to replace Freifunk’s usage of the OLSR (Optimized Link State
Routing) protocol.

2

1.2. Assessing BATMAN Aalborg University

As the Freifunk network grows with more devices, a higher demand is placed on the
BATMAN protocol. It is therefore still under heavy development (as of 2020-11) for it to
fulfill these demands. Research on BATMAN are therefore quickly outdated as it changed.

To assist research and development of BATMAN this project will focus on assessment of
BATMAN.

1.2 Assessing BATMAN

Table 1.1 shows different methods to assess routing protocols. It is important to distinguish
between the implementation and protocol, as some methods will only assess the protocol
and not a specific implementation.

Method Description Considerations
Analytical Mathematically describe scenarios

and analytically draw conclusions.
Impractical with complex scenarios.
Only as accurate as the mathemat-
ical model used. Unfit to test pro-
tocol implementation.

Simulation Implement protocol and networking
behavior in software and run sce-
narios against it.

Only as accurate as the imple-
mentation. Random behavior can
be implemented deterministically
which gives reproducible results if
all inputs are known.

Testbed Replicate scenarios in a real world
environment.

Accurately captures wireless imper-
fections and other real world effects.
Hard to reason about error sources,
which hurts reproducibility. Im-
practical with many devices.

Table 1.1: Description and considerations of methods for assessing routing protocols.

The analytical method can work well if scenarios and protocol can easily be described
mathematically. This method does not take a specific implementation into account, and
implementation specific faults are therefore ignored.

Simulation implements all network and physical behavior in software, including the wanted
scenarios. Link quality and other physical behavior can also be simulated deterministically,
resulting in reproducible results. However the simulation platform may not support
running a real implementation, and can therefore perform differently than the real
implementation. Simulation also may not expose faults caused by hardware or other
real world effects, such as radio interference.

A testbed solves these issues by running the implementation on real hardware, meaning
it will be as close to a real world use case as possible. This can be impractical as it can
require many devices and large amount of space for complex scenarios. Node movement
may also be harder to emulate as devices must be moved around physically.

A testbed was deemed the best solution for evaluating the performance of BATMAN.
Furthermore, the motivation of this project was initiated by a scientist at Aalborg

3

Group 19gr352 1. Introduction

University, whom had requested a testbed that can evaluate the performance of BATMAN.
The development of a testbed that can easily be deployed and maintained by third-party
users is a non-trivial task. This project scope is therefore placed on development of a
testbed targeted at BATMAN for Aalborg University.

1.3 Initial Problem Statement

This leads to the following initial problem statement:

"How can a testbed be made for BATMAN?"

4

Problem Analysis 2
Now that mesh networks and BATMAN has been introduced, the initial problem statement
will be investigated and further analyzed to deduce a final problem statement.

2.1 Introduction to BATMAN

As mentioned in the introduction, BATMAN is a proactive routing protocol, meaning
that route information is continuously kept up to date and used when a packet must be
sent.

Instead of keeping entire routes in its table, each node, including the sender, only keeps
the next neighbour to send to. To build these routes, BATMAN nodes need information
about possible routing endpoints (also called originators), which is transferred using OGMs
(Originator Messages).

Originally formulated in the 2008 IETF (Internet Engineering Task Force) draft "Better
Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.)", BATMAN version I through
IV uses the OGMv1 scheme [2]. In OGMv1, each originator floods the network with
OGM packets containing information about the originator and a sequence number used
for routing. Other nodes will record the OGMs in a local originator table, including
information about which sequence numbers have been received from which neighbour.
Nodes can therefore find which neighbour has the best connection to an originator by
statistical analysis of the originator table.

A sliding window with a size, proposed by the standard, of 128 OGMs is used to store
which sequence numbers were received. OGMs outside this window are ignored. The
originator table stores a sliding window for each neighbour, repeated for each originator.

The sliding window is a list of fixed length N , sliding forward with the current expected
sequence number n. It therefore contains the status of the last N OGMs with sequence
numbers n−N +1 to n. The status of OGMs in the sliding window is therefore a measure
of link quality.

This protocol has several problems described below:

• "Wireless [network] interfaces usually come with packet loss varying over time,
therefore a higher protocol transmission rate is desirable to allow a fast reaction on
flaky connections. Other interfaces of the same host might be connected to Ethernet
LANs / VPNs which rarely exhibit packet loss or link state changes. Those would
benefit from a lower protocol transmission rate to reduce overhead." [6]

5

Group 19gr352 2. Problem Analysis

• "It generally is more desirable to detect local link quality changes at a faster rate
than propagating all these changes through the entire mesh (the far end of the mesh
does not need to care about local link quality fluctuations)." [6]

2.1.1 BATMAN V

BATMAN V tries to solve the issues stated above by splitting the responsibilities of the
OGM packet into two; ELP (Echo Location Protocol) for neighbour discovery and OGMv2
for flooding network information. [7]

ELP packets are frequently broadcast from each node, and each receiver records this entry
in the neighbour table. Additionally nodes frequently ping their neighbours for throughput
and status measurement. [8]

With the ELP packages, each node has a throughput measure for each neighbour link,
which is used as the main metric for routing. Each routing node updates forwarded OGM
packets with the throughput of the receiving link, so that it always holds the throughput
of the weakest link. [9]

When a node receives an OGM, it decides whether the sending neighbour should be
selected as a router for the originator. The neighbour will be selected if the throughput is
higher than that of the currently selected router, or if the sequence number is substantially
higher than the last received OGM. The OGM is then forwarded only if the neighbour is
the (now) selected router. [9]

With each hop a throughput penalty is added to the OGM packet, meaning shorter paths
are preferred over long ones. [9]

2.1.2 BATMAN in OSI

The OSI (Open System Interconnection) model is a conceptual model for classifying
network protocols. It defines 7 stacked layers, each only interfacing with its 2 immediate
neighbour layers. The first 3 layers of the model are described below:

(L3) Network Routes packages to other networks enabling large networks.

(L2) Data-Link Manages how frames are sent over L1. IEEE (Institute of Electrical
and Electronics Engineers) defines two sublayers LLC (Logical Link Control) and
MAC (Media Access Control):

• LLC connects multiple L3 protocols to a single MAC [10].

• MAC handles framing, addressing, and error checking [10].

(L1) Physical Defines how unstructured bits are transmitted over a the physical medium
such as a wire or wireless.

The BATMAN protocol has two different implementations; batmand and batman-adv.
Since batmand is deprecated it is deemed out of scope. The newer implementation batman-
adv runs at L2 of the OSI model [11].

6

2.2. Related Work Aalborg University

Contrary to other L2 protocols batman-adv requires an existing L2 protocol such as
ethernet or wifi. Batman-adv packets can therefore have two ethernet headers as can
be seen in figure 2.1.

Figure 2.1: Headers added to a TCP packet sent through batman, captured through Wireshark.

2.1.3 Packet Size and Fragmentation

As stated in section 2.1.2 on the facing page, BATMAN adds multiple headers to each
packet passing through the network, which is a problem if the underlying L2 protocol
limits the frame sizes (MTU (Maximum Transmission Unit)).

If a higher MTU is not supported by e.g. drivers or hardware, BATMAN packets can be
fragmented into smaller packets which fit within a limited MTU. However this comes at
the cost of performance. [12]

2.2 Related Work

As stated in the introduction, in order to validate the potential of BATMAN, a testbed is
created. Earlier projects have tried to validate the usefulness of BATMAN with testbeds.
These testbeds often vary a lot in their setup, testing environment, and metrics measured,
however examining them could still help narrowing the scope of which metrics that should
be measured on this testbed.

An alternative to BATMAN is a routing protocol called OLSR (Optimized Link State
Routing Protocol) and in [13, 14, 15, 16] comparisons of these two protocols have been
made. In [15] it was found that OLSR performed better in their scenarios, which focused
on the nodes being in movement, however it was also found that BATMAN showed better
performance in terms of packet loss.

Packet loss

Packet loss is a focal point of ad-hoc networks due to the fact that re-transmission can
be expensive when many hops are introduced. Whilst all 10 papers measured this metric,
many of the results are not comparable due to the difference in the setups. The packet
size is a factor in how much packet loss there is, in [17] it was found that in the 3rd hop
an average of ~17.0% of the packets were lost with a packet size set to 73 byte, and ~71.2
% for the 4th hop. While using a packet size of 1500 byte it was found that packets were
lost ~73.6 % and ~84.5 % of the time in the 3rd and 4th hop respectively. Both [18] and
[14] managed to observe 0 % packet loss with 4 hops in a static environment. However, it
is evident and intuitive that the packet loss percentage rises when movement is introduced
and it was found that it impacts the system more negatively if the source node is moved
rather than the destination node [13].

7

Group 19gr352 2. Problem Analysis

Generally the consensus seems to be that packet loss increases with the number of hops
that is necessary to reach the destination node. Therefore, it might be of interest to
investigate the possibility of decreasing the packet loss when multiple hops are used.

Throughput

This is a metric that looks at the rate of how fast messages are successfully delivered over
a channel, which is often measured in bits per second. In [17] it was found that the packet
size also greatly determines the throughput of BATMAN. With 73 byte packets it was
managed to have a throughput of ~295 Kbit/s and with 1500 byte packets it was ~150
Kbit/s after 4 hops, while the throughput in the first hop was ~126 Mbit/s. According
to [15] and [14] it was found that after the 3rd hop, throughput decreased more than
50%. Moreover, in [19] an experiment was conducted on a testbed which started with an
average of 6.53 Mbit/s TCP throughput on the first hop, and when it got to the fourth
hop the throughput dropped to 1.6 Mbit/s. According to [20] the throughput degradation
of wireless ad-hoc networks follow the formula: Θ(W/

√
n · log(n)) for n randomly located

nodes and W as the transmitting capability (bits/second). It could be interesting to see
how close the throughput of a physical BATMAN testbed would follow the aforementioned
throughput degradation model.

Delay

When data is transferred from one place to another it is bound to have a delay and
oftentimes this delay increases when it is done wirelessly. [21] found that by placing 17
nodes on two different levels of a building, that the delay was around 10-30 ms. However,
in the aforementioned paper it was not measured how well it handled the multi-hopping
but instead just an average of all packets sent on the network. In [15] it was found that
the average delay exceeded 2.5 seconds when data had to be moved over three or four
hops. Furthermore, [17] found, as expected, that the packet size also had an impact on
the delay i.e. a 1500 byte packet took more than double the time to transfer compared to
a 73 byte packet.

Jitter

Jitter is the irregularities in periodicity in a periodic signal which is usually undesired
in a system. A performance test between two different implementations of BATMAN,
i.e. batman-adv and batmand, was conducted and jitter was found to be generally higher
in the older implementation compared to batman-adv. In one of the scenarios all the
nodes were static and the jitter was measured to ~60 ms for batman-adv and ~620 ms for
batmand. [18]

2.2.1 Overview

In order to get an overview of how prominent the different metrics are in prior testbeds a
chart was made which can be seen in 2.2. It should be noted that packet loss and packet
delivery are counted as the same. The same should be noted for delay where latency and
RTT (Round-Trip Time) are both counted as delay.

8

2.2. Related Work Aalborg University

Pa
ck
et

lo
ss

D
el
ay

Ji
tt
er

T
hr
ou

gh
pu

t0

2

4

6

8

10

N
um

be
r
of

en
tr
ie
s

Figure 2.2: Distribution of metrics that were measured in 10 different BATMAN testbeds [16, 21, 13,
14, 15, 17, 18, 19, 22, 23].

In figure 2.2 it can be seen that packet loss was the most popular metric, followed by
throughput which was measured in nine projects. Figure 2.2 could be used to decide
which metrics that would be interesting to measure and which would not be. However,
it is hard to say whether the most prominent metrics are the most important, easiest to
measure, or nothing more than the most common.

2.2.2 Real Life Usage

BATMAN is in real use at Freifunk which is a volunteer organisation that operates free
and open wireless community mesh networks.

Freifunk builds and distributes firmware based on the OpenWrt OS (Operating System),
which is meant to be run on cheap home routers. Once connected to the mesh net,
users can provide services (blogs, file sharing, news, etc. like any other online service)
over IPv4 (Internet Protocol version 4) and/or IPv6 (Internet Protocol version 6). In
the case of IPv4, only private RFC1918 (Request for Comments) addresses are available
and assigned via central DHCP (Dynamic Host Configuration Protocol) servers. This
means IPv4 services, by default, only are available to other Freifunk users and are not
as decentralized as IPv6 services where public addresses are available and DCHP is not
needed. [1]

There are Freifunk nodes operating in homes, rooftops, church towers, community centers,
hackerspaces, cafes, venues, and even refugee camps so refugees can communicate with
friends and family from their home country. Freifunk have also installed long haul radio
links for redundancy and load distribution purposes. Freifunk has other meshnets (via
VPNs), gateways to the internet and is present in the IX (Internet Exchange) in Hamburg
and can be peered with through AS49009 (Autonomous System). [1]

Freifunk started in 2003 and some of the challenges they encounter are:

9

Group 19gr352 2. Problem Analysis

• Frequent topology changes mainly due to volunteers joining and leaving the
network. [1]

• Link quality changes due to weather conditions, interference, and much of the
network being run over Wi-Fi which is not nearly as reliable a wired connection. [1]

2.3 Test Scenarios

Open-mesh is the organization that hosts BATMAN infrastructure like code repositories,
a wiki, and a website. They have defined test scenarios on their page that can showcase
the routing of BATMAN under topology- and link quality changes in terms of the Best
Route, Convergence Speed, and Mobility [24]. These scenarios could be interesting to carry
out on a testbed to verify BATMAN behavior.

Best Route

The link quality between two nodes might not be the same for sending and receiving,
as shown in figure 2.3. The protocol should detect the most optimal path through this
network and sends data through that path.

A

B

C

20% Link quality

100% Link quality

Figure 2.3: Simple link quality test configuration. [24]

In figure 2.3 it would not be the most optimal route for node A to send directly to node
C, it is instead better to pass the packet through node B and then to node C, making it a
multi-hop transmission. If the link quality between the two was 100% both ways, the path
would simply be direct between them. The link quality in these figures is a representation
of the best path compared with other less desirable paths. So the most optimal path is
100% and another path might be 20% as in the figure, meaning it is 20% as optimal as
the best path, in terms of transfer speed etc.

Something that was not done in this example, that could be interesting, is specifying a
route through the network separate to the optimal one, to compare the different paths’

10

2.3. Test Scenarios Aalborg University

travel time. This would, however, require more nodes than three, like the example in
figure 2.3 on the preceding page.

To achieve this, a setup similar to the second test setup on open-mesh examining
asymmetric paths could be used. This is shown in figure 2.4.

N1

A B

N2

N4

N3

20% Link Quality

100% Link Quality

Figure 2.4: Expanded link quality test configuration. [24]

Here the optimal route for a packet from node A to node B is by going through the
several ’N nodes’. Likewise for sending from B to A the path is still multi-hop with only
one N node between B and A. But as previously mentioned, it might be interesting to
compare the time the packet takes through undesirable routes with the most optimal one,
for example forcing a packet to travel single-hop directly from A to B (if they can reach
each other) and oppositely let a packet travel through the N nodes from B to A.

Having data on different paths for same size packets allows evidencing that the protocol
is smart enough to travel through the most optimal paths.

Convergence Speed

Sometimes nodes disappear from the ad-hoc network, which might cause the rerouting to
be revisited by the protocol for some nodes. It might also happen that the link between two
nodes just disappears, and the protocol has to recalculate the best routing. Convergence
speed tests show how fast the protocol is at altering the routing in these cases [24].

A simple way of doing this is shown in figure 2.5 on the next page. Here the solid line
is the original routing, which is at some point broken caused by e.g. bad signal or the
distance between the nodes are changed so that they are out of range of each other. The
dotted line represents the newly calculated route for the packets.

11

Group 19gr352 2. Problem Analysis

N1

AB

alternative path between A and B

current best path between A and B

Figure 2.5: Simple broken link setup. [24]

However to test this in a more comprehensive manner, more nodes are necessary. Such a
configuration is shown in figure 2.6.

N1

A B

N5N2 N4

N6 N10N7 N9

alternative path between A and B

current best path between A and B

N3

N8

Figure 2.6: Expanded broken link setup. [24]

Figure 2.6 shows the routing from node A to node B which goes through some other
nodes, shown as the solid line. Then one of the intermediate nodes is turned off and the
route must be recalculated, represented by the dotted line. This is one of many ways of
testing convergence speed, as there are many subsets of methods of testing the protocol
in convergence speed. These all are similar and achieve different results, other example
setups are shown in figure A.1 on page 77 and figure A.2 on page 77.

Mobility

The BATMAN protocol calculates the most optimal routes between nodes in frequent
intervals. This is useful if nodes are moving, especially if some nodes come out of range

12

2.4. batadv-vis and alfred Aalborg University

of each other and a new route is necessary for packets to reach their final destination.
Open-mesh scenarios cover this, using figure 2.7 as a blueprint for the setup.

N1

A

B

N2 N1

A

B

N2

Figure 2.7: Moving node setup. [24]

Packets are moving from A to B by having intermediate nodes. Here the A node is moving
and at some point A gets out of range of its neighbour node and in range of another, and
a new route is calculated.

2.3.1 Adjusting Link Quality

Since link quality is important to BATMAN and these scenarios, it is necessary to simulate
different link qualities, or nodes being out of range of each other. This can be difficult if
space is limited since all nodes might be able to reach each other and this testbed is being
made for a laboratory, so it is assumed that space will be limited. Therefore measures
have to be taken to ensure that it is possible that link quality is adjustable and nodes
being controllably in- and/or out of range of each other.

2.4 batadv-vis and alfred

batadv-vis is a program which can be used to export graphs of a BATMAN network in
various formats. These graphs can give insight about a network that may be useful and
as such batadv-vis is explored. An example of such graph is in figure 2.8 on the next page
where the DOT export format, which is default, was used by piping it to the Graphviz
[25] tool fdp producing a PDF (Portable Document Format) file: # batadv-vis | fdp >
fig.pdf

13

Group 19gr352 2. Problem Analysis

10:6f:3f:eb:64:06
c4:3d:c7:80:b9:f61.037

10:6f:3f:eb:63:98

1.032

be:6b:8d:a5:88:19

TT

33:33:ff:a5:88:19

TT

33:33:00:00:00:fb

TT

01:00:5e:00:00:01
TT

01:00:5e:00:00:fb

TT

33:33:00:00:00:01

TT

Figure 2.8: Example batadv-vis DOT output visualized with Graphviz while one node is running batadv-
vis. DOT file source can be found in appendix B on page 79.

In figure 2.8, each ellipsis shaped node represents a network interface and edges represents
links between two network interfaces. If the edge is labeled with a number where 1.0 is a
perfect 100% TQ (Transmission Quality), 2.0 is 50%, 3.0 is 33.3̄% and so on. If the edge
is labeled with "TT" (Translation Table), the head node1 is a non-mesh client which can
reach and be reached by the mesh network. Examples of such non-mesh clients are hosts
being bridged into the mesh net and multicast MAC addresses (Media Access Control
addresses) also show up as such. Rectangles group multiple BATMAN interfaces which
belong to a single node. [26, 27, 28]

All nodes in figure 2.8 are described in table 2.1.

MAC Address Description
10:6f:3f:eb:64:06 Network interface on the node which is running batadv-vis
be:6b:8d:a5:88:19 BATMAN interface on the node running batadv-vis
c4:3d:c7:80:b9:f6 Mesh net node, 1.037 TQ
10:6f:3f:eb:63:98 Mesh net node, 1.032 TQ
01:00:5e:00:00:01 IPv4 Multicast
01:00:5e:00:00:fb IPv4 Multicast
33:33:ff:97:7e:b8 IPv6 Multicast
33:33:00:00:00:fb IPv6 Multicast
33:33:00:00:00:01 IPv6 Multicast

Table 2.1: Description of nodes in figure 2.8.

1The node which is directed to.

14

2.4. batadv-vis and alfred Aalborg University

Note that TQ is as seen from the node running batadv-vis. Additionally, of all non-
mesh clients, only the non-mesh clients of the node which is running batadv-vis are
visible. batadv-vis depends on another program, alfred (Almighty Lightweight Fact
Remote Exchange Demo) which can make TQ and non-mesh nodes, as seen from other
nodes, visible. alfred can distribute arbitrary information among other BATMAN nodes
running alfred using multicast. It is a user space daemon that interfaces with batman-adv
on the in-kernel netlink bus, which is available to user space through the netlink socket API
(Application Programming Interface) [29]. batadv-vis is continuously run in server mode
which will make alfred provide data from batman-adv in a unix-socket. While batadv-vis
is run in server mode, another instance of batadv-vis can be run in client mode, which
will print the graph. [28, 30]

The data flow (reading and writing) between sockets, buses, and programs is illustrated
in figure 2.9.

Kernel space
User space

alfred

batman-adv

netlink bus

netlink socket

batadv-vis
(server)

batadv-vis
(client)

Unix socket

Figure 2.9: Data flow diagram of batman-adv, alfred, and batadv-vis.

alfred has two modes of operation, primary and secondary:

• Primary nodes can receive and send arbitrary information (from itself or secondary
nodes to fellow primary nodes). [30]

• Secondary nodes can send arbitrary information to primary alfred nodes.

Running alfred and batadv-vis on two nodes in the same example setup used for figure 2.8
on the facing page and running batadv-vis (client) on a primary alfred node yields
figure 2.10 on the next page.

15

Group 19gr352 2. Problem Analysis

c4:3d:c7:80:b9:f6

10:6f:3f:eb:63:98

1.000

10:6f:3f:eb:64:06

1.049

33:33:00:00:00:fb

TT

01:00:5e:00:00:01TT

1a:fb:92:65:0e:94

TT

01:00:5e:00:00:fb

TT

33:33:ff:65:0e:94

TT

33:33:00:00:00:01

TT 1.032

1.054

TT
TT

TT

TT

be:6b:8d:a5:88:19

TT
33:33:ff:a5:88:19

TT

Figure 2.10: Example batadv-vis DOT output visualized with Graphviz while two nodes are running
alfred. DOT file source can be found in appendix C on page 81.

In figure 2.10 it can be seen that the "TT" edges of the two nodes running alfred are now
visible alongside TQ as seen by both nodes.

In conclusion, batadv-vis does not provide any of the metrics that related works have
measured (see section 2.2 on page 7), but it could be interesting to include in the testbed.
For instance, it could be used to verify that a test scenario (see section 2.3 on page 10)
was performed properly (with the expected links, transmission quality, etc.).

2.5 Desired Capabilities

Some capabilities were discussed with Sebastian Bro Damsgaard, a research assistant at
AAU that will use the testbed. The desired capabilities that were agreed upon are assisted
deployment (including deployment of various applications, e.g. voice chat) and replicable
results.

Having assisted deployment of the testbed allows streamlining of the setup of tests, making
them more ’fool proof’, and minimizing the work a scientist will have to do to set up the
testbed. Examples of assisted deployments are for instance a way to reconfigure multiple
nodes at once.

This assisted deployment system can also make a test configuration be reproducible or
replicable. A distinction between reproducible and replicable is necessary, as the two have
different implications. If results from a test are absolutely the same between two identical
tests, then the testbed’s results are reproducible. This would be ideal. However, since
this is a real-world testbed the results can not be perfectly reproducible, but replicable.
By replicable results it is meant that variability in the results of otherwise identical
experiments should be minimized. By having replicable results, tests can be rerun (by
oneself or by others) to further validate the results. Unfortunately there are external
factors which practically cannot be controlled, such as interference (e.g. from nearby
phones, laptops, access points, etc.) or hardware faults. On the contrary, internal factors
within practical control of the testbed should be controlled.

16

2.6. Final Problem Statement Aalborg University

Aside from assisted deployment and replicable results from tests, there should also be
raw access to the data that leads to results. That is, regardless of what data is being
gathered, all of the raw data from a test should be available to scientists using this
testbed. Allowing for collection of local state like neighbor tables on each BATMAN node
could also be useful for scientists using this testbed, for instance to determine the reason
for unexpected behavoir. This can be done using existing tools like batctl.

Finally, movement of nodes during testing should also be allowed without the testbed
breaking, but any assistance in moving the nodes is deemed out of scope for this project.

2.6 Final Problem Statement

In summary, BATMAN is a proactive routing protocol for ad-hoc meshnets that operates
between layer 2 and 3 in the OSI model. Others have measured packet loss, delay, jitter,
and throughput with various testbeds. Yet, there are many scenarios where BATMAN
remains inexhaustively tested. It would be beneficial if a testbed could be constructed
that allows for carrying out these scenarios in a replicable fashion while measuring useful
metrics and integrating with existing BATMAN tools. As such, the following final problem
statement is formulated.

"How can a testbed be made for measuring packet loss, delay, jitter, and throughput of
the BATMAN under open-mesh’s- and potentially additional routing scenarios at Aalborg
University?"

17

Requirement Specification 3
Ad-hoc networking is an alternative to the traditional internet structure. An
implementation of an internet protocol that allows this is batman-adv, which is an
implementation of the BATMAN protocol. This is however a relatively new and
unexplored technology, and therefore it is interesting to test the limits of this new internet
structure, by creating a streamlined testbed. Reports have been created from tests of
ad-hoc networks, using not only BATMAN but other protocols to route through ad-hoc
networks. Out of the metrics these reports have measured it was found in the problem
analysis that; packet loss, delay, jitter, and throughput were interesting metrics to measure
in this testbed, as well as additional metrics from batctl, such as neighbors and originators.

To streamline the testing of BATMAN, a few test scenarios have been identified, that
explores routing in terms of best route, convergence speed, and mobility.

From the problem analysis the following requirements are specified. The order in which
they are presented have no meaning in regards to their ranking of importance, as they are
all valued equally, for the testbed to function according to the problem analysis.

1) The testbed should measure packet loss, delay, jitter, and throughput.
This makes it possible to analyse the protocol and implementation.

2) The testbed should store the measured metrics persistently.
This makes it possible to analyze metrics after a test is done.

3) The testbed should have adjustable link quality between nodes.
This makes it possible to deploy the testbed in environments with different sizes.

4) The testbed should have assisted deployment.
This will make the setup easier.

5) All scenarios in section 2.3 on page 10 should be able to be carried out on the
testbed.
This ensures that the testbed can test BATMAN’s ability to find the best route,
convergence speed, and mobility

6) The results of carrying out scenarios on the testbed should be replicable.
This allows verification of results.

7) The testbed should collect the local BATMAN state of nodes using existing tools.
This gives an insight on how BATMAN takes routing decisions on each node.

19

Design 4
This chapter addresses thoughts on the infrastructure of deploying the system, how the
software modules should interact with each other. Lastly, the chapter will describe other
challenges that will need to be taken into consideration.

When developing a system that can conform with requirements such as the ones listed in
chapter 3 on page 19, it was deemed necessary to sketch the system before the development
began.

4.1 Network

For BATMAN to be tested, some nodes should be interconnected via BATMAN. As
illustrated in figure 4.1, this network will be referred to as batnet.

Node 1 Node ... Node n

Batnet

Figure 4.1: Nodes connected via BATMAN.

It is desired that the testbed should have assisted deployment which provisions the nodes
with certain software versions. An instance of such software is a Tracker which is to be
run on each node to collect BATMAN metrics. The communications channel to transfer
metrics is named the secondary channel, even though it may be the batnet itself or a local
cache on each node which is gathered after each experiment. The pros and cons of each
considered secondary channel type for transferring metrics are shown in table 4.1.

Channel type Pros Cons
Cache on node Minimal interference Can not transfer metrics live

Wired Can transfer metrics live Requires a wire for each node
Wireless Can transfer metrics live Might interfere with batnet if

they are on the same frequency
Batnet Can transfer metrics live, Does

not require additional set up
Interferes with batnet

Table 4.1: Pros and cons of secondary channel types.

It was decided that a wireless channel, which is not the batnet itself, should be prioritized
as it is deemed to strike a balance between interference and practicality. Practicality in

21

Group 19gr352 4. Design

the sense that running many wires or provisioning the nodes over batnet where reliability
is unknown or setting up a third channel is impractical.

The use of a secondary channel for metric collection and deployment is illustrated in
figure 4.2.

Node 1
+ Tracker

Node ...
+ Tracker

Node n
+ Tracker

Batnet

Deploy Node
+ Deployer
+ Storage

+ Deblobber
+ Visualizer

Secondary channel

Figure 4.2: Batnet and secondary channel.

4.2 Deploy Node

Figure 4.2 also shows that metrics are gathered and stored centrally on the Deploy Node.
This is done since there is no immediate need for distributed storage and storage being
centralized makes ACID (Atomic, Durable, Isolated, Consistent) transactions easier to
achieve. However, metrics are not necessarily sent in a format that can be stored directly,
the data may be sent as a "blob" (a binary format) instead. Therefore a deblobber "deblobs"
the data before sending it to storage. The deblobber can be run on each node or only the
deploy node. This is left as an implementation detail though it is shown here as running
on the deploy node. Once the data is stored, the visualizer program can illustrate the
measured metrics.

In figure 4.3 on the next page it is shown that the deploy node also acts a gateway,
providing an internet connection to the nodes. This is done to give the nodes access to
online software repositories which may be used during deployment or debugging.

22

4.3. Golden Image Aalborg University

Node 1
+ Tracker

Node ...
+ Tracker

Node n
+ Tracker

Batnet

Deploy Node
+ Deployer
+ Storage

+ Deblobber
+ Visualizer

Secondary channel

Internet

Figure 4.3: Batnet and secondary channel with internet acccess.

Having the deploy node configuring nodes over a connection does propose a problem
though: How does the initial connection get configured? This is a ’chicken-and-egg’
problem since the deploy node is supposed to roll out such configurations, but it requires
a connection to do so.

Two solutions to this ’chicken-and-egg’ problem were identified; manual configuration
of the initial connection or modifying the disk image that nodes boot on to include
configuration of the initial connection. The latter was chosen as disk images have to
be distributed anyway. These modified disk images are copies of the same image, called a
golden image.

4.3 Golden Image

Using a golden image is beneficial since it ensures that software versions, configuration
files, etc. are identical across nodes.

Care should be taken not to let software versions, configurations files, etc. deviate from
the golden image as that could harm replicability of results (e.g. by using a newer kernel).
Letting nodes deviate also reduces the usefulness of the golden image as a test target of
software that should be run on there, such as the tracker.

4.4 Tracker

Figure 4.4 on the following page shows the overall structure of the tracker software, and
shows how different modules will be chained together. The chain will be event-based
meaning each Input Module will push new metrics when they arrive. The tracker is event-
based because packets arrive sporadically and they should have unique timestamps (as
opposed to e.g. stamping multiple packets with the same timestamp).

23

Group 19gr352 4. Design

Timestamp

BATMAN metrics

Packet capture

Input Modules

Remote Host

Local Cache
Output Modules

Figure 4.4: The structure of the tracker, with input- and output modules.

When a new metric has been emitted by the Input Module, it will travel along the chain
until it reaches an Output Module. This chain structure was chosen to ease the process
of adding Input Modules or extra links.

Before metrics reach the Output Module it passes through the Timestamp Module which
stamps each metric with a timestamp and a node id. The timestamp must be precise and
synchronized with other nodes to allow time comparisons between metrics from different
nodes.

4.5 Clock Synchronization

Since a time stamper is needed, some sort of clock synchronization is necessary, so the
nodes can agree on what time it is. However, it is not sufficient to just do this once, since
the clock in a computer can drift. This drift can be caused by inaccuracies in the local
clock source, and eventually not be running at the exact same time as a reference clock,
so one will eventually be ahead or behind of the other. An example of this can be seen in
figure 4.5, where three nodes have different perceived times.

Node 1

Perceived time: 0:35

Node 2

Perceived time: 0:40

Node 3

Perceived time: 0:41

Figure 4.5: Desynchronised nodes having their own perception of time.

One potential solution to this problem is to have the nodes ask a NTP (Network Time
Protocol) server, specifically designed for clock synchronisation. There are different
implementations of this interaction; Windows Time, Chrony, SNTP, etc. To avoid
having to synchronizing every node, a single node can work as a master node for clock
synchronisation for all other nodes on the network. The master node can get its time
either from an upstream provider or its own local clock. Benefits of using the master
node’s local clock are that it does not require an internet connection, but a drawback
is that it can drift and make timestamps incomparable to outside devices like phones or
wristwatch. The rest of the nodes synchronise their clock with that master node.

These clock synchronisation services work in two different ways. One is where the a node
asks the server what the time is and gets a response and the other method, the server tells

24

4.5. Clock Synchronization Aalborg University

the nodes what time it is without being asked. These interactions are shown in figure 4.6a
and figure 4.6b

Master
Node

Node n

Time

Round trip time

(a) Nodes ask the master node for clock synchronisation.

Master
Node

Node n

Time

~Half round
trip time

(b) Master node telling the nodes what time it is, and nodes replying with an
acknowledgement.

Figure 4.6: Methods of achieving clock synchronisation.

Both of these methods have their own advantages and disadvantages. The schema on
figure 4.6a has one major disadvantage. Namely, the time it takes for the full round
trip, since a node has to ask the master node, and wait for a response. This can, if the
connection is experiencing high variance in latency, known as jitter, cause the nodes on
the network to still have different perceptions of what time it is. Contrarily this time
difference would be smaller between nodes if the same situation arose for method two on
figure 4.6b, where the master node just tells the nodes what time it is. This effectively
means that the time it takes to synchronise clock on the network is half the round trip
time of the first method. Here the master tells the time to the node, which that node
responds to with an acknowledgement back to the master node. The method used by NTP
is method one, as the computer knows best when it wants to have its clock synchronised,
for example on boot up [31].

4.5.1 Conflicting Time stamps

Once the synchronisation of the clocks on the nodes has been completed, another problem
can arise. Namely, what should happen if multiple measurements happen within a single
clock tick. Table 4.2 on the following page shows such a situation.

25

Group 19gr352 4. Design

Packet Timestamp
A 20
B 21
C 21
D 22

Table 4.2: Example data with time stamps.

In this example the interval between clock ticks is slower than the rate at which packets are
timestamped. This can make it hard to distinguish packets across nodes, and impossible
to know with certainty which packet was stamped first from the timestamp alone. It
also means certain metrics can not be calculated over sufficiently short time spans. For
instance, bytes transferred from 20 to 20.8 is unknown since this example timestamps
packets with an integer. It is assumed that clock ticks, in practice, are fast enough to
allow for common metrics to be calculated and therefore it is not addressed. To address
that packets can not be distinguished across nodes in case of conflicts, it was decided
that the tracker should include a hash of packet contents which would make a sample
timestamp conflict look as shown in table 4.3.

Packet Timestamp Hash
A 20 123423456
B 21 789678967
C 21 879045677
D 22 674567454

Table 4.3: Example data with time stamps and packet content hashes.

In table 4.3 packets can be distinguished across nodes even in they have conflicting
timestamps due to the hash of packet contents.

4.6 Link Quality

As mentioned in section 2.3.1 on page 13 link quality and distance/space are important.
Introducing varying distances between nodes in testing sessions might yield different
results, which are also relevant when testing the limitations of any network. Using the
same arrangement of nodes but with varying distances is one simple way of achieving this.
The ways of adjusting link quality that are explored, are:

• Physical distance between nodes;

• software;

• shielding.

Physical Distance Between Nodes

The simplest way of testing the network in the scope of distance is by physically moving
nodes away from each other. However, a large area of testing may be needed, which means

26

4.7. Summary Aalborg University

variance in the environment (e.g. different levels of interference) can be harder to account
for. Consequently, high range nodes can make it harder to test BATMAN.

Software

Another method for adjusting the link quality between the nodes is with a software
approach. This can be done by lowering the transmit power on the antennas, which
would mean that the nodes would need to be closer in order to communicate, potentially
allowing for a scaled down version of the testbed.

Alternatively, consequences of reduced link quality like increased packet loss and reduced
throughput can be imitated in software, for instance via Linux Traffic Control [32].

Shielding

Similarly to reducing transmit power, change in link quality can be achieved in another
way; by shielding the nodes. [33] achieved a simulated distance between nodes by inserting
each of them into cardboard boxes wrapped in aluminum foil. This would allow nodes
to communicate with each other in a semi-controlled manner, either by creating thicker
layers of foil or moving boxes slightly further away from each other. However, it is difficult
to translate the thickness of the shield to link quality reduction in the real world, and
therefore should be used cautiously.

Regardless of how distance between nodes is implemented in the testbed, all of Open-
mesh’s test setups are compatible with all of the previously mentioned solutions.

4.7 Summary

A deploy node is used to deploy a golden image of the testbed software across all
nodes, which includes a working BATMAN setup, tracking software, as well as other
implementation specific software.

The tracking software has input modules that are designed such that additional modules
can be added to the testbed if needed. By default, the tracking software has input modules
for packet capturing and batctl metrics. These metrics are time stamped at time of
measurement and sent to an output module responsible for sending the data to the data
store.

To ensure that timestamps are synchronised all nodes synchronize their clocks from the
deploy node.

Lastly, three methods of reducing link quality have been identified. Of these, reduction
of transmit power from software and physical distance will be used. Cardboard boxes are
excluded since it is speculated that effects of aluminum foil are not identical to real world
effects like distance. Linux Traffic Control is excluded since the configuration which best
imitate the real world is unknown.

27

Implementation 5
The system was built to conform with the system design described in chapter 4 on page 21.

In order to make the system flexible for gathering various metrics, it was designed to
be modular and thereby ease incorperation of additional metrics as seen in figure 4.4 on
page 24.

Node n
Tracker

batctl

ipaddr

Stamper

packet

vis

batctl

batadv-vis

Remote out

Metric Metric
 (Stamped)

SQL
Postgres

Visualizer

glibc &
scripts

libpcap

Buffer

SQL

DB handler

Packet
handler

Deblobber

JSONL

HTTP

Scientist

Deployer

Figure 5.1: System overview

In figure 5.1 it can be seen that that the input modules i.e. vis, ipaddr, packet,
batctl all send their data as a Metric object. In the Stamper module the Metric object
gets assigned two new attributes: a timestamp and an node identifier. The stamped

29

Group 19gr352 5. Implementation

Metric object then gets passed to a buffer module which is in place to secure that no other
input module is blocked in case that the Remote out is unable to send. The Remote
out module sends the data formatted as JSONL (JavaScript Object Notation Lines), to
a remote host. The Deblobber module holds a socket open and continually listens to it.
Afterwards, when data is received it is then processed and inserted into the database by
the deblobber. Lastly, data can then be queried from the database and visualized with
the visualizer tool.

As a final remark, it was chosen that the Deblobber should run on the deploy node. This
allows for using a high-level language and dependencies without worrying much about
computational resources or managing said dependencies across nodes.

5.1 Hardware

For this project several Raspberry Pi -2Bs, -3s, -3Bs, and -4s have been provided for
developing and testing the testbed. The Raspberry Pi 2Bs use an ARMv7 architecture
[34] while the -3s and 4s use ARMv8 [35] which is largely backwards compatible with
ARMv7 [36].

It is not possible to exceed the 1500 MTU on the Raspberry Pis built-in Wi-Fi module, so
a Wi-Fi dongle with a changeable MTU was decided to be the solution to this problem.
The Wi-Fi dongles used for this are the Buffalo AirStation N150 Wireless USB Adapter
(WLI-UC-GNM), referred to as Buffalo(s), which have a changeable MTU size.

The laptop used as the deploy node is an x86 Lenovo Thinkpad T520 borrowed for this
project.

5.2 Deployer

The deploy node acts as a master node, which is responsible for pushing out golden images
containing an OS (Operating System) with required configurations, along with a working
BATMAN setup. Furthermore, the deployer also puts the tracker on the nodes. This
deployment is achieved with Ansible which eases reconfigurating nodes and the tracker as
well as the deployer itself. Using Ansible allows configuring of all nodes at the same time,
so that they are all identical.

5.2.1 Golden Image

Since the golden image does not have to be modified often, it was decided to modify
the prebuilt Raspberry Pi OS (based on Debian) [37] image. This is faster to learn
than learning a more comprehensive build system. The Raspberry Pi OS image is
2020-08-20-raspios-buster-armhf-lite.zip with a SHA256 (Secure Hash Algorithm)
checksum of
4522df4a29f9aac4b0166fbfee9f599dab55a997c855702bfe35329c13334668.

In the Raspberry Pi OS image there are two partitions, one which is supposed to be
mounted on / (named root partition) and another which is supposed to be mounted on

30

5.2. Deployer Aalborg University

/boot (named boot partition). To modify the image, each partition is mounted by their
offset which are found using fdisk as shown in snippet 1.

1 $ fdisk -l image.img
2 Disk image.img: 1.72 GiB, 1845493760 bytes, 3604480 sectors
3 Units: sectors of 1 * 512 = 512 bytes
4 Sector size (logical/physical): 512 bytes / 512 bytes
5 I/O size (minimum/optimal): 512 bytes / 512 bytes
6 Disklabel type: dos
7 Disk identifier: 0x907af7d0
8 Device Boot Start End Sectors Size Id Type
9 image.img1 8192 532479 524288 256M c W95 FAT32 (LBA)

10 image.img2 532480 3604479 3072000 1.5G 83 Linux

Snippet 1: fdisk usage to view partition offset and sector size.

In snippet 1 it can be seen that the root partition (as identified by the Linux file
system) starts at an offset of 532480 sectors. This means the offset in bytes is
532480 · 512 = 272629760 bytes (since the sector size is 512 bytes) which can be used
by mount, for instance mount –verbose –options offset=272629760 –types ext4
image.img /tmp/mnt. Once mounted, the partition can be trivially modified as long
as its size is not exceeded (there are ~275M available on root partition of the image that
was used).

The modification performed to the root partition is a configuration of the initial connection
to the deploy node as mentioned in chapter 4 on page 21, which is similar to the
configuration explored in section 5.2.2 on the following page.

Two modifications are performed to the boot partition:

• A /boot/ssh file is created which turns on sshd on the nodes, which is needed for
further configuration.

• a /boot/wpa_supplicant.conf file that sets the country code is created, which is
needed for the radio to turn on.

Note that these files are "consumed" by default services running on Raspberry Pi OS,
meaning they may not be present in /boot once the Raspberry Pi is booted on the image.

This modification process was semi automated by writing a few simple scripts. For
instance, the creation of the /boot/wpa_supplicant.conf file is shown in snippet 2 on
the next page (assumes the boot partition has been mounted in $MNT, which is done
previously).

31

Group 19gr352 5. Implementation

1 if ["$TYPE" = "boot"]; then
2 # Create ssh file
3 touch "$MNT/ssh"
4

5

6 # Set wifi country code
7 # A service on the rpi image will copy this and disable rfkill
8 cat > "$MNT/wpa_supplicant.conf" << EOF
9 ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

10 update_config=1
11 country=$COUNTRY_CODE
12 EOF
13 fi

Snippet 2: Creation of the /boot/wpa_supplicant.conf file in the boot partition.

To distribute the golden image, network booting was considered. However it is seemingly
not more convenient than flashing memory cards as only wired network boot is supported
by the Raspberry Pis [38].

5.2.2 Configuring Nodes

As mentioned in chapter 4 on page 21, an assisted deployment system should install needed
software and keep versions consistent across nodes. Furthermore, it is also a requirement
that this system can manage kernel modules and networking since batman-adv is a kernel
module and needs according network configuration. Multiple solutions exists that can
solve this problem, however Ansible was chosen, which is a tool that can help automating
deployment of applications and provisioning of software versions. The reason for choosing
Ansible over other similar tools is due to previous experience.

For instance, installing BATMAN and adding the batman-adv kernel module is done with
the YAML (YAML Ain’t Markup Language) in snippet 3.

1 - name: Install batctl and avahi
2 apt:
3 pkg:
4 - batctl=2019.0-1
5 - avahi-autoipd=0.7-4+b1
6 state: present
7

8 - name: Add batman-adv kernel module
9 modprobe:

10 name: batman-adv
11 state: present

Snippet 3: Installing BATMAN and adding the batman-adv kernel module.

It can be noted that avahi-autoipd is also installed. avahi-autoipd implements dynamic

32

5.2. Deployer Aalborg University

configuration of IPv4LL (Link Local) addresses, as specified in RFC3927, which means
nodes in the testbed automatically will configure an IPv4 address. As mentioned
in section 2.2.2 on page 9, Freifunk use centralized DHCP servers and not IPv4LL.
Presumably because IPv4LL addresses are limited to the network scope 169.254.0.0/16,
which contains 216 = 65536 addresses, meaning that address collisions would be a problem
as the number of nodes in the mesh network increase. However, as there are not nearly
that many nodes in this testbed, address collisions are not a problem. As seen in snippet 4
(of the network configuration on mesh nodes) avahi-autoipd is started every time the bat0
interface is brought up.

1 iface bat0 inet6 auto
2 pre-up batctl-wrapper.sh
3 iface bat0 inet manual
4 up avahi-autoipd -D --force-bind bat0
5 down avahi-autoipd -k bat0

Snippet 4: Starting of avahi-autoipd and calling of batctl-wrapper.sh in the /etc/network/interfaces

With regards to IPv6, Rasberry Pi OS seemingly enables IPv6LL addresses when an
interface is set to "auto". As such, each node has both an IPv4 and IPv6 address. In
snippet 4 it can also be noted that before being brought up, batctl-wrapper.sh gets called.
batctl-wrapper.sh is a script that adds a specified interface to BATMAN via batctl if
add. The reason for this wrapper script is that as mentioned in chapter 4 on page 21,
this testbed prioritizes a wireless channel which is not the batnet itself. In practice, this
second channel is implemented using the Wi-Fi module that is built-in the Raspberry Pis.

Therefore there needs to be a way to distinguish between the built-in Wi-Fi module and
the USB adapters. This could be done via interface names but Debian bug #101728 [39]
means that the wlan0/wlan1 naming is not consistent across reboots. That is, wlan0 may
correspond to the built-in Wi-Fi module before a reboot but correspond to a USB adapter
after a reboot. A solution to this is using systemd’s predictable interface names. However,
it seems systemd changes the naming scheme once in a while [40, 41] which would mean
scripts around the naming scheme have to be modified whenever the scheme is changed.
While the naming scheme would only change on major upgrades of Raspberry Pi OS since
it is a breaking change, the scripts would seemingly have to be modified more than if the
wlan0/wlan1 naming is kept.

Scripts are used since it was deemed beneficial to be able to distinguish between a built-in
Wi-Fi module and a USB adapter by an arbitrary number of bytes of the MAC address,
usually three to represent the manufacturer, which is not directly offered by systemd’s
naming scheme [41]. This is beneficial since the scientist does not need to check the MAC
address of all wireless adapters, but only one for each manufacturer. As can be seen in
snippet 5 on the following page, these MAC address prefixes are specified as a YAML list
in Ansible variables.

33

Group 19gr352 5. Implementation

1 nodes:
2 vars:
3 batnet:
4 macs: # beware that networkmanager uses MAC addr randomization
5 - 4c:e6:76 # buffalo a
6 - 10:6f:3f # buffalo b
7 - c4:3d:c7 # netgear

Snippet 5: YAML list of MAC address prefixes as Ansible variables.

It seemed obvious to have the MAC addresses as Ansible variables since the file that
contains these variables has to be edited anyway to specify nodes’ IP addresses. As shown
in snippet 7 and snippet 5, the MAC addresses get joined to a space separated string by
Ansible templating. This is because the content of the double curly braces get evaluated
by Ansible templating before placing the script on a node. Templating is executed using
snippet 6 in an Ansible playbook. An Ansible playbook is essentially a collection of
YAML files with tasks that the Ansible-playbook command line tool executes on specified
IP addresses over SSH (Secure Shell).

1 - name: Template and copy script templates to remote
2 template:
3 src: "{{ item }}"
4 dest: "/usr/bin/{{ item | basename | regex_replace('\\.j2$', '') }}"
5 mode: '755'
6 with_fileglob:
7 - "*.sh.j2"
8 notify:
9 - Restart networking

Snippet 6: Templating and placement of files with the .sh.j2 file extension (j2 is short for jinja2, the
templating language used by Ansible).

In snippet 6 it can also be seen that there is a notify key with a "Restart networking"
value. This means that if Ansible templates and places scripts, which it only does if the
content of relevant files have changed, the "Restart networking" handler will be notified.
A handler is like a task, except that it is only executed when notified and only executed
once, even if it is notified multiple times.

1 [-z "$BATNET_MACS"] && BATNET_MACS="{{ batnet.macs | join(' ') }}"
2 [-z "$IP_LINKS"] && IP_LINKS=$(ip -brief link)
3

4

5 batnet_interface

Snippet 7: MAC address prefixes joined by templating into a script.

In snippet 7, note that the batnet_interface function is called. That function uses the

34

5.2. Deployer Aalborg University

global variables BATNET_MACS and IP_LINKS, as shown in snippet 8.

1 batnet_interface() {
2 local ii=1 # sed counts lines from 1
3 local found=0
4 for fullmac in $(echo "$IP_LINKS" | awk '{print $3}'); do
5 for mac in $BATNET_MACS; do
6 # prefix match, allows for e.g. first 3 bytes of

MAC↪→

7 if [["$fullmac" == $mac*]]; then
8 found=1
9 # Will break out of two levels

10 break 2
11 fi
12 done
13 ii=$((ii + 1))
14 done
15

16 # if all lines were iterated, but no match, return 1
17 ["$found" -eq "0"] && return 1
18

19 # the interface from the line where mac address matched
20 interface=$(echo "$IP_LINKS" | sed --quiet ${ii}p | awk

'{print $1}')↪→

21

22 # only print if an interface was found
23 [-n "$interface"] && echo "$interface" || return 1
24 }

Snippet 8: batnet_interface function.

The batnet_interface function loops over all lines in IP_LINKS and each line contains an
interface name and a corresponding MAC address. When it finds the given MAC address
prefix that matches a full MAC address it uses the ii (iterator) variable to determine
which line of IP_LINKS the match was and prints the interface name of that line. The
batnet_interface gets used by a mapping in /etc/networking/interfaces as shown in
snippet 9.

1 mapping wlan*
2 # Interface name is passed as argument, script prints "batnet" or

"tracknet"↪→

3 script batnet-or-tracknet-from-if.sh

Snippet 9: Mapping of wlan interfaces to a configuration.

The mapping in snippet 9 matches all interfaces with the "wlan" prefix and passes each
interface name as an argument to a script named batnet-or-tracknet-from-if.sh. This
script uses the batnet_interface function in snippet 8 to determine if the argument is

35

Group 19gr352 5. Implementation

supposed to be a batnet or tracknet, which is also called Secondary Channel in section 4.1
on page 21, and prints it. This print is used to determine whether a batnet or tracknet
interface configuration should be applied which are shown in snippet 10 and snippet 11
respectively.

1 iface batnet inet manual
2 mtu 1532
3 wireless-channel 2
4 wireless-essid BATCAVE
5 wireless-mode ad-hoc

Snippet 10: Configuration of a batnet interface.

1 iface tracknet inet dhcp
2 wpa-ssid Alfred PennyWorth
3 wpa-psk azcomtek550phat$tacks

Snippet 11: Configuration of a tracknet interface.

In summary, the deploy node runs Ansible which places an /etc/network/interfaces
file on each node. The interfaces file uses scripts, that have been templated and placed by
Ansible, to apply a correct configuration to wlan interfaces decided by MAC address the
prefix.

Tests

A unit test was written for the batnet_interface function, since it contains most of
the logic for implementing addressing of nodes by MAC address prefix. Additionally,
tests for the batnet_interface function is simpler to implement than e.g. testing of the
/etc/networking/interfaces file (since that depends on a network, DHCP server, other
BATMAN nodes, etc.). The batnet_interface function only depends on the two global
variables: BATNET_MACS and IP_LINKS. Therefore a script was written, which can
run multiple cases of the global variables that checks the output against an expected
result. Such a test case is shown in snippet 12.

1 TEST_ID="dd"
2 export BATNET_MACS="00:28:f8:30"
3 export IP_LINKS="garbage"
4 OUT=$(../batnet-interface.sh.j2); RC=$?
5 EXPECTED_OUT=""; EXPECTED_RC=1
6 unittest

Snippet 12: Test case of batnet_interface function.

The unittest function tests the actual output and return code against the expected output
and return code, which is shown in snippet 13 on the facing page.

36

5.2. Deployer Aalborg University

1 unittest() {
2 printf "\nRan test $TEST_ID... "
3 if ["$EXPECTED_OUT" != "$OUT"]; then
4 printf

"Failed, mismatching output! Expected \`$EXPECTED_OUT\`, got \`$OUT\`\n"↪→

5 exit 1
6 elif ["$EXPECTED_RC" -ne "$RC"]; then
7 printf

"Failed, mismatching return code! Expected \`$EXPECTED_RC\`, got \`$RC\`\n"↪→

8 exit 1
9 fi

10 printf "Success!\n"
11 }

Snippet 13: unittest function.

Compared to test frameworks, this unit test script may seem to lack features (e.g.
test coverage calculation). However, as the only use for these tests is to ensure basic
functionality and recreate bugs that are discovered, such that they never resurface, extra
features are not needed and simplicity is prioritized.

5.2.3 Deploy Node

As mentioned in chapter 4 on page 21, the deploy node is responsible for giving internet
access to nodes which will be done via:

• NAT (Network Address Translation);

• dnsmasq [42] as DHCP and DNS (Domain Name System) server;

• hostapd [43] to create a wireless access point.

It is also responsible for storage, visualization, and configuring nodes. Furthermore, as
mentioned in section 4.5 on page 24, it should also act as a master clock synchronization
node. It was decided to use NTP as the clock synchronization protocol due to its ubiquity
and the Chrony implementation since [44] had good results with Chrony.

The deploy node happens to run NixOS due to prior experiences and the inner workings
of NixOS are considered out of scope.

NAT

NAT is configured as shown in snippet 14 on the next page where lanInterface and
wanInterface are strings of systemd’s predictable interface names based on the physical
location of the connector to the hardware, e.g. "wlp3s0".

37

Group 19gr352 5. Implementation

1 nat = {
2 enable = true;
3 internalInterfaces = [
4 lanInterface
5];
6 externalInterface = wanInterface;
7 };
8

9 interfaces.${lanInterface} = {
10 ipv4.addresses = [
11 { "address" = "192.168.1.1"; "prefixLength" = 24; }
12];
13 };

Snippet 14: NAT configuration.

dnsmasq

DHCP and DNS are provided by dnsmasq, as mentioned earlier, and is configured as
shown in snippet 15.

1 dnsmasq = {
2 enable = true;
3 extraConfig = ''
4 interface=${lanInterface}
5 domain-needed
6 bogus-priv
7 dhcp-range=192.168.1.32,192.168.1.63,infinite
8 dhcp-option=option:router,192.168.1.1
9 dhcp-authoritative

10 cache-size=5000
11 '';
12 };

Snippet 15: dnsmasq configuration.

Note, the nodes keep the first address they receive from DHCP because of the infinite
lease time. This is practical since it means the nodes can be addressed by their IP address
without worrying about them changing. Also notice that the DHCP range fits the CIDR
(Classless Inter-Domain Routing) block 192.168.1.32/27 which allows up to 25 = 32
addresses and thus makes using nmap on the range faster than a common /24 block.
With regards to DNS requests, dnsmasq forwards them to an upstream server if there is
a cache miss, which would be a failed attempt to read that block of data.

hostapd

hostapd creates a Wi-Fi access point and it is configured as shown in snippet 16 on the
next page.

38

5.2. Deployer Aalborg University

1 hostapd = {
2 # enable if interface name starts with "w" (is hopefully wireless)
3 enable = if (builtins.substring 0 1 lanInterface) == "w" then true else

false;↪→

4 ssid = "Alfred PennyWorth";
5 wpaPassphrase = "azcomtek550phat$tacks";
6 interface = lanInterface;
7 countryCode = "DK";
8 };

Snippet 16: hostapd configuration.

hostapd is only started if the interface name starts with "w", meaning it is a wireless
interface. This is done since the lanInterface in principle could be a wired connection, in
which case it is not necessary to start hostapd and it would probably also fail to start.

Storage

PostgreSQL is used for storage and is set up as shown in snippet 17.

1 postgresql = {
2 enable = true;
3 enableTCPIP = true;
4 authentication = lib.mkForce ''
5 local all all trust
6 host all all 0.0.0.0/0 trust
7 host all all ::0/0 trust
8 '';
9 ensureDatabases = ["batman_testbed_db"];

10 ensureUsers = [
11 { name = "readonly"; ensurePermissions =

{"DATABASE batman_testbed_db" = "CONNECT";}; }↪→

12];

Snippet 17: PostgreSQL configuration.

Notice that any connection from anywhere is trusted for convenience’s sake. However,
it is not an issue as the firewall is configured to open relevant ports exclusively on the
lanInterface, meaning that there is only access to the database from the secondary channel,
which in this case is a password protected Wi-Fi network. The presence of a "readonly"
user is ensured, which can be used when one does not want to accidentally modify content
of the database, "batman_testbed_db" (more on this in section 5.4 on page 47).

Chrony

Chrony is used as the NTP server and it is configured on the deploy node as shown in
snippet 18 on the following page.

39

Group 19gr352 5. Implementation

1 chrony = {
2 enable = true;
3 extraConfig = ''
4 allow
5 local
6 '';
7 };

Snippet 18: Chrony configuration.

Observe the allow directive that runs chrony in server mode and the local directive
which makes chrony use local time on the deploy node as a reference clock. [45]

5.3 Battracker

As mentioned in figure 4.4 on page 24 the tracker has an input, which is where the data is
collected, and an output, which is where the data is handled. Before the data reaches the
output phase it is stamped with a node id and a timestamp. The system was developed
in C++, as it allows for OOP (Object-Oriented Programming), which is preferable due
to having prior knowledge and experience with OOP.

5.3.1 Module Communication

As mentioned in section 4.4 on page 23 communication between the before mentioned
input modules, stamper module and output modules is event-based. When an input
module has data to send, it will push this data to a chain of modules with the last one
being an output module.

The data produced by the input modules are represented by a class called Metric. Each
input module extends the Metric class with its own data structure.

This can be seen in figure 5.2 on the next page where the PacketCapture module has its
own PacketMetric which extends Metric (A full overview of the system can be seen in
appendix E on page 85).

40

5.3. Battracker Aalborg University

Metric

+string timeStamp;
+string MACaddress;

MetricHandler

+push(unique_ptr<Metric> m)

PacketCapture

+PacketCapture(MetricHandler &mOutput, const char *interface)

+start()
PacketMetric

+get_name()
+get_data()

MetricStamper

+MetricStamper(MetricHandler &next, string macif)
+push(unique_ptr<Metric> m);

RemoteOut

+RemoteOut(string host, int port);
+push(unique_ptr<Metric> m);

«implements»

«implements»

«uses»

«produces»

Figure 5.2: Cropped class diagram of the Tracker.

Metric defines two methods get_name() and get_data(), which classes that extend
Metric must implement.

get_data() is used by output modules to get the formatted data in the Metric. get_name()
returns the name of the input module.

Snippet 19 shows how PacketMetric overrides these methods. The m_ prefixed values are
set in PacketMetric’s constructor.

1 std::string PacketMetric::get_name() {
2 return "packet_module";
3 }
4

5 std::string PacketMetric::get_data() {
6 json j;
7 j["type"] = m_type;
8 j["len"] = m_full_len;
9 j["hash"] = m_hash;

10 j["data"] = base64_encode(m_header, m_header_len);
11 return j.dump();
12 }

Snippet 19: PacketMetric’s implementation of get_name() and get_data().

The stamper module and output modules receives these metrics when they are produced
by a input module. This interaction is generalized with the MetricHandler interface, which
defines the push() method.

All input modules have a reference to a MetricHandler which the input modules will push
Metrics to.

The MetricStamper sets the public values timeStamp and MACaddress on Metric and
forwards it to the next MetricHandler in the chain.

41

Group 19gr352 5. Implementation

The chain of modules is configured at compile time inside the main() function of the
program. An example of such a definition can be seen in snippet 20.

1 int main() {
2 RemoteOut out("192.168.1.1", 1234);
3

4 MetricStamper stamp(out, "wlan1");
5

6 PacketCapture inPack(stamp, "wlan1");
7 inPack.start();
8

9 return 0;
10 }

Snippet 20: Example definition and running of module chain.

5.3.2 Input modules

As mentioned in the start of chapter 5 on page 29, the metric gathering tools, called input
modules, are meant to be modular.

Packet Capture

One of the input modules implemented is the packet capture input module, which captures
all packets received by a node, however every packet type except BATMAN packets are
ignored.

The BATMAN packets are categorized into two main categories i.e. special packets
which range from 0x00 to 0x3f and unicast packets which range from 0x40 to 0x7f.
All BATMAN headers start with a packet-type byte which can be used to handle the
packets differently, e.g. the OGM packets mentioned in section 2.1 on page 5 has the
packet-type 0x00. All the packets in the unicast category have common headers, which
includes packet-type, version, TTL, and destination. [46]

The method used to find packet-type and length of the whole packet without the initial
ethernet header, can be seen in snippet 21 on the next page.

42

5.3. Battracker Aalborg University

1 PacketMetric::PacketMetric(uint8_t *packet, size_t len) {
2 // Pull fields from packet and len
3 m_full_len = len;
4 m_type = packet[0];
5 m_header_len = get_packet_size(m_type);
6

7 XXHash32 hash(0);
8 hash.add(packet, len);
9 m_hash = hash.hash();

10

11 // Copy over packet
12 m_header = (uint8_t *) malloc(m_header_len);
13 if (m_header == NULL) {
14 throw runtime_error("Could not allocate packet array");
15 }
16

17 memcpy(m_header, packet, m_header_len);
18 }

Snippet 21: The packet metric.

Something to notice is line 7-9, where the packet is hashed. This is done to avoid sending
entire packet contents to the remote host. Furthermore, it allowed for easier differentiation
of packets across nodes.

The method used to start the packet capture module, can be seen in snippet 22.

1 void PacketCapture :: start(){
2 const char *device = m_interface;
3 char error_buffer[PCAP_ERRBUF_SIZE];
4 pcap_t *handle;
5 /* Snapshot length is how many bytes to capture from each packet.

This includes*/↪→

6 int snapshot_length = 2000;
7 // capture indefinetly
8 #ifdef TEST_INPUT
9 int total_packet_count = 100;

10 #else
11 int total_packet_count = -1;
12 #endif
13 PacketCapture *my_arguments = this;
14

15 handle = pcap_open_live(device, snapshot_length, 0, 0, error_buffer);
16 pcap_loop(handle, total_packet_count, packet_handler,

(u_char*)my_arguments);↪→

17 }

Snippet 22: The function starting the packet capture module.

43

Group 19gr352 5. Implementation

The important parts of the function in snippet 22 on the previous page, is the
pcap_open_live() and pcap_loop(). The pcap_open_live() starts capturing on a
network interface, device, with a snapshot length of 2000, to ensure large packets
are handled correctly. 2000 was chosen to have a safety margin from the MTU and
it doesn’t seem to cause any performance issues. The pcap_loop() function loops the
pcap_open_live() and makes it possible to keep capturing packets, which is set in line
8-12 (total_packet_count).

Batctl Input Modules

A tool for batman-adv is batctl which allows for multiple functionalities such as:
throughput meter, neighbor table, route tracing, and much more. It was decided to
parse the output of select functionalities to avoid reimplementation.

Batctl Neighbors is an input module that uses batctl for getting a nodes’ neighbor
nodes. This information is extracted by executing a batctl command on the node, and
parsing the command output. However not all the information from this output is needed,
and therefore some formatting of that output is necessary. This is be done by extending
the commands by using programs that filter standard outputs, such as awk and tail.
For getting neighbors, the command shown in snippet 23 is executed on the Raspberry pi.

1 # batctl n | tail --lines=+3 | awk '{print $2}'

Snippet 23: batctl command with formatting functions to get a column of neighbors.

This command gets the node’s neighbor nodes and removes the first three lines of that
output using tail. This leaves only columns of data, but only the neighbors are needed,
so awk is used to only print the column with neighbors. The end result of this command
is a string of neighbor nodes’ MAC addresses, separated by newlines.

To parse this into the tracker, popen() is used, which allows executing commands and
reading the output as a stream of strings. This is shown in snippet 24

1 output = popen ("batctl n | tail --lines=+3 | awk '{print $2}'", "r");

Snippet 24: Using popen to execute a batctl commands.

This output stream is saved to a temporary string and when a newline is found, the string
is appended into a vector, and then reset. This process repeats until the end of the stream
is reached, and results in a vector containing all MAC addresses of the node’s neighboring
nodes. The vector with the MAC addresses is then changed to JSON format and sent to
the deblobber.

The full cycle of gathering and sending data happens once every second, though with a
slight delay from the time it takes to execute the module itself.

44

5.3. Battracker Aalborg University

Batctl Originators is a module that works almost the same as the neighbor module.
They are similar in the sense that output from a command is parsed, and sent to the
data store. They are different since multiple columns is wanted from this output, and not
simply one column of the output, as was the case with the neighbor table. This output
is then added to a JSON object and sent to the deblobber for further formatting. The
reason it is not entirely formatted on the tracker is that it is simpler to implement parsing
of this command output in Python than C++. It also showcases flexibility because the
place of parsing and formatting is left to the implementer. The command is shown in
snippet 25.

1 # batctl o | tail --lines=+3

Snippet 25: batctl command to get originator table for a node.

Executing this command gives that node’s originators, when those nodes were last seen,
and the destination node for that originator. Lastly, executing and getting the data from
the output of this command, as well as sending it to the deblobber is done in the same
way that the neighbor module did with the same interval.

batadv-vis Input Module

An additional module was added to the tracker to get batadv-vis data, which is received
just like the neighbor and originator modules. The command to get this data is executed
and the output is streamed into the tracker. For this module, it is not necessary to do
any formatting of the data, and therefore the raw output from the command is added to a
JSON object and sent to the deblobber. The batadv-vis command is shown in snippet 26.

1 # batadv-vis

Snippet 26: batadv-vis command, returning an output to be used later.

5.3.3 Output Modules

All input modules’ data is sent to one of these modules, where it is handled. The
benefit of making output modules modular is to ease the process of making additions
or modifications. Current output modules are Remote host and Local cache. The way the
output module is chosen, is whether or not another host has been put as a command line
argument. This should be changed in the future as additional output modules are added,
since one can only choose between two output modules at the moment. This means that
if it is not possible to setup a remote host node, the data can saved on the node itself.

Remote host

When this module is used to handle the output, it is forwarded to another host. This
allows for collection of data on a single device, whereof later analysis of collected data can
be done on the remote host.

45

Group 19gr352 5. Implementation

When the output module is created it creates a TCP (Transmission Control Protocol)
socket connection the remote host which is kept open. The metrics data is formatted as
JSON and if the socket connection is open, the data is sent through the socket. If the
socket has been closed it will try to reconnect CONN_TRIES1̄0 number of times. This can
be seen in snippet 27.

Each JSON formatted metric is separated by a newline as specified by the JSONL
standard. Each line is its own JSON object, meaning they can be parsed separately
on the remote host.

1 void RemoteOut::push(std::unique_ptr<Metric> m) {
2 json j;
3 j["node_id"] = m->MACaddress;
4 j["timestamp"] = m->timeStamp;
5 j["module"] = m->get_name();
6 j["data"] = m->get_data();
7

8 string dump = j.dump() + "\n";
9 for (int i = 0; ; i++) {

10 if (send(m_socket, dump.data(), dump.length(), MSG_NOSIGNAL) < 0)
{↪→

11 if (errno == EPIPE && i < CONN_TRIES) {
12 cout << "trying to resend" << endl;
13 sleep(1);
14 i += reconnect(CONN_TRIES - i);
15 continue;
16 }
17 throw system_error(errno, generic_category());
18 }
19

20 // Successfull send, break
21 break;
22 }
23 }

Snippet 27: The push method of the remote host module.

In snippet 27 it can be seen that JSON keys are set with the object attributes of m, which
is passed to the function. Afterwards, the JSON object is serialized in order to be passed
to the send() function. If the send() function fails, it retries and if this fails 10 times a
system error is thrown.

This module allows for sending data live to a remote host, which was done to allow for
analyzing data whilst conducting tests. This could be beneficial due to the fact that the
scientist would be able to get instant feedback when e.g. moving a node.

46

5.4. Deblobber & Storage Aalborg University

Local Cache

When this module is used, the data is saved on the node collecting the data. As with the
remote host module, metrics are written using the JSONL format to a file. The data is
then collectable later. The local cache module push method can be seen in snippet 28.

1 void CacheData::push(std::unique_ptr <Metric> m) {
2 myFile.open ("localCache.json", std::fstream::out |

std::fstream::app);↪→

3

4 json j;
5 j["node_id"] = m->MACaddress;
6 j["timestamp"] = m->timeStamp;
7 j["module"] = m->get_name();
8 j["data"] = m->get_data();
9

10 string dump = j.dump() + "\n";
11

12 myFile << dump;
13 myFile.close();
14 }

Snippet 28: The push method of the local cache module.

In snippet 28 it can be seen that the JSON keys are set from the attributes of the passed
object m. Lastly, the JSON object is serialized to a JSON string, which is then written to
a file.

This output module was built to evaluate if sending data through a secondary channel,
whilst conducting a test, would impact the results. As well as, if a secondary channel is
not present on the node, it would still be possible to collect data by using this output
module. Nodes may be unplugged during the test, which is an unexpected power loss from
the perspective of the OS. Fortunately, this will not corrupt the local cache as appends
are atomic on ext4 by default [47].

5.4 Deblobber & Storage

As seen in figure 5.1 on page 29, data is sent from the output on the node to the deblobber.
When data is received on this module it either gets parsed or it gets inserted directly into
the database. This is dependent on whether the data is already parsed, such instance is
a packet from the batctl Neighbor module. The deblobber module can either be placed
on the nodes or on the deploy node. However, as mentioned in chapter 5 on page 29 it
was decided that it would be advantageous to place the deblobber on the deploy node
in order to use a high-level language without worrying about performance and the use of
dependencies without worrying about dependencies on each node.

A class diagram of the deblobber can be seen in figure 5.3 on the following page

47

Group 19gr352 5. Implementation

DBHandler

+sql_host
+sql_user
+sql_database
+sql_sql_password
+conn

+DBHandler(config)
+prepare()
+connect()
+insert_metric()

Handler

+port
+host
+socket
+test_id
+db

+Handler(config, db, test_id)
-handle_packet()
+listen()
-listenToNode()

OriginatorDeblob

+data

+OriginatorDeblob(data)

PacketDeblob

+data

+PacketDeblob(input_data)
+as_json()
+as_dict()

«uses»«uses»

Figure 5.3: Class diagram of the deblobber.

In figure 5.3, it can be seen that the Handler aggregates DBHandler and uses the
OriginatorDeblob and PacketDeblob. The reason for the aggregation is because when
the handler has first identified the packet type and deblobbed the packet, it uses the
instantiated DBHandler object to insert the data into the database.

As mentioned in section 5.3 on page 40 all metrics have common fields i.e. timestamp,
node_mac, and module, which allows for distinguishing between the metrics and thereby
handling them differently. This is done as shown in snippet 29.

1 def __handle_packet(self, packet):
2 if packet["module"] == "packet_module":
3 metric = json.loads(packet["data"])
4 metric = PacketDeblob(metric).as_dict()
5 packet["data"] = json.dumps(metric)
6 elif packet["module"] == "batctl_originators":
7 tmp = json.loads(packet["data"])["originator"]
8 packet["data"] = json.dumps(OriginatorDeblob(tmp).data)
9

10 self.db.insert_metric(packet, self.test_id)

Snippet 29: Handling packet based on its module.

48

5.4. Deblobber & Storage Aalborg University

If the data is from the packet capture module, it is first decoded from Base64. Afterwards,
the packet is unpacked by using the struct library, with a predefined structure for each
packet type. Unpacking is shown in snippet 30 and a predefined structure is shown in
snippet 31.

1 def deblob(pack_fields, pack_format, packet, macs=[]):
2 ret = pack_fields._asdict(pack_fields._make(unpack(pack_format,

packet)))↪→

3

4 for mac in macs:
5 ret[mac] = format_mac(ret[mac])
6

7 return ret
8 [SNIP]
9 if input_data['type'] == 0:

10 # OGM
11 deblobbed = deblob(ogmfields, ogmformat, packet, ["orig",

"prev_sender"])↪→

Snippet 30: Unpacking OGMs.

1 common = "packet_type version "
2 ogmfields = namedtuple("OGM", common +

"ttl flags seqno orig prev_sender tq tvlv_len")↪→

3 ogmformat = "!BBBBI6s6sxBH"

Snippet 31: OGM structure.

In ogmformat the exclamation mark means that the network byte order is big-endian, and
each letter represents a data-type defined by the struct library, which is designed to be
compatible with C data types. Numbers in the same string are a number of contiguous
bytes, and in this case it is used for mac addresses i.e. originator sender and previous
sender. This allows for retrieving fields from all the various batman packets. However, if
a different version of BATMAN is used as input module it could be so that the deblobber
would have to be adjusted accordingly, which is a drawback.

PostgreSQL was chosen as the database for two reasons:

• JSON (JavaScript Object Notation) support, which means it is not needed to
predefine all fields that the tracker sends, but rather predefine the ones that are
common across all input modules and let the rest be inserted as unstructured JSON.
In practice this is implemented using the JSONB data type of postgres, which makes
postgres decompose the JSON to a binary format that does not need to be reparsed
on each query [48].

• The TimescaleDB extension, which is not used, but was a possible solution in case
of performance issues.

49

Group 19gr352 5. Implementation

After data has been deblobbed, it is inserted into the database as shown in snippet 32.

1 def insert_metric(self, metric, test_id=0):
2 parsed_time = parse_time(metric['timestamp'])
3 with self.conn:
4 with self.conn.cursor() as curs:
5 curs.execute("""
6 INSERT INTO batman_testbed_schema.metrics (test_id,
7 timestamp,
8 input_module,
9 node_mac,

10 data)
11 VALUES(%s,%s,%s,%s,%s)
12 """,
13 (
14 test_id,
15 parsed_time,
16 metric['module'],
17 metric['node_mac'],
18 metric['data']
19)
20)

Snippet 32: Insert metrics into db.

In snippet 32 the function execute() from the psycopg2 library is called, which takes SQL
(Structured Query Language) queries. Furthermore, the second parameter is an optional
one which takes variables in form of a tuple and maps them into the query string. It can
also be seen that the function insert_metric() takes a parameter called test_id, which
makes it trivial to differentiate between the tests later.

To configure which port the deblobber should listen on, which database it should insert
data in, and such, a JSON configuration file is used.

Testing

Edge cases of incoming data which were not considered during parsing were predicted
to be- and were encountered a few times. Therefore unit tests were written with the
unittest framework (from the Python Standard Library) that contain such edge cases. In
snippet 33 on the facing page and snippet 34 on the next page a test case is shown for
different parsers.

50

5.5. Visualizer Aalborg University

1 class TestOriginator(unittest.TestCase):
2 def test_sample(self):
3 result = {
4 "10:6f:3f:eb:63:90": {
5 "nexthop": {
6 "10:6f:3f:eb:5a:c2": 128,
7 "10:6f:3f:eb:63:90": 255,
8 },
9 "last-seen": 0.030,

10 }
11 }
12 data = """\
13 10:6f:3f:eb:63:90 0.030s (128) 10:6f:3f:eb:5a:c2 [wlan1]
14 * 10:6f:3f:eb:63:90 0.030s (255) 10:6f:3f:eb:63:90 [wlan1]"""
15 dec = OriginatorDeblob(data)
16 self.assertEqual(dec.data, result)

Snippet 33: Testing of parsing an originator table.

Observe that the incoming data is restructured quite a bit to remove redundant data and
in that spirit, the asterisk (which indicates the best route) is removed, since the best route
is always the one with the best TQ.

1 def test_elp(self):
2 result = {"packet_type": 3,
3 "version": 5,
4 "orig": "c6:9b:b4:54:11:0e",
5 "seqno": 391702878,
6 "elp_interval": 3568022221,
7 "length": 16,
8 "hash": 123}
9 data = self.form_packet("0305C69BB454110E1758E95ED4ABB2CD", 3, 16)

10 dec = PacketDeblob(data)
11 self.assertEqual(dec.as_dict(), result)

Snippet 34: Testing of parsing an ELP packet.

5.5 Visualizer

The visualizer exists to illustrate metrics, though metrics which are not directly inserted
into the database need to be calculated first. To construct queries that do these
calculations, psql and/or Adminer was used for quick iteration and in cases where
visualization is not beneficial (e.g. when the result is a single number).

Grafana was thoroughly evaluated for visualization, but it was found to be incompatible
with the current system.

This means the only visualizer component is a program called httpplotter.

51

Group 19gr352 5. Implementation

5.5.1 httpplotter

httplotter is a program that sends plots over HTTP (Hypertext Transfer Protocol) and its
main purpose is to render and serve images of the batadv-vis DOT output over a network.
It should be accessible from other computers, i.e. the scientist’s computer. The main
parts of the corresponding source code is shown in snippet 35.

1 @app.get("/vis")
2 def vis(engine: str = 'fdp',
3 filetype: str = 'svg',
4 sample: bool = False,
5 TT: bool = False,
6 node_mac: str = "10:6f:3f:eb:63:98"):
7 [SNIP]
8 with db.conn:
9 with db.conn.cursor() as curs:

10 curs.execute("""SELECT data ->> 'DOT'
11 FROM batman_testbed_schema.metrics
12 WHERE node_mac = %s
13 AND input_module = 'batadv-vis'
14 ORDER BY timestamp DESC
15 LIMIT 1;
16 """, (node_mac,))
17 dot = curs.fetchone()[0]
18 [SNIP]
19 graph = graphviz.Source(dot, format=filetype, engine=engine)
20 return Response(graph.pipe(), media_type=MEDIA_TYPES[filetype])

Snippet 35: Rendering and serving images of batadv-vis DOT output.

To request and view a sample image, visit e.g. http://localhost:8000/vis?sample=true,
assuming httpplotter is configured to run on port 8000 on localhost, from a browser.

The httpplotter is written in Python with the FastAPI framework for rapid development,
which turned out beneficial since useful features were added on-the-fly while testing if
the testbed fulfilled the requirements set in chapter 3 on page 19. One such feature is
a parameter for removing "TT" (Translation Table) nodes from the output of batadv-vis
which is trivial to implement and shown in snippet 36.

1 if not TT:
2 noTT = ""
3 for line in dot.splitlines():
4 if "TT" not in line:
5 noTT += f"{line}\n"
6 graph = graphviz.Source(noTT, format=filetype, engine=engine)

Snippet 36: Removing "TT" nodes from DOT output of batadv-vis.

While "TT" nodes can be removed from the output of batadv-vis with a command line

52

5.5. Visualizer Aalborg University

flag, "TT" nodes would not be present in the database at all if that flag was set.

Output without "TT" nodes is default and such plots will be present in chapter 6 on
page 55, but if they are desired, one can visit e.g.

http://localhost:8000/vis?sample=true&TT=true.

Configuration of which database the httpplotter should query, which port it should listen
on, etc. is also done in a JSON file like the deblobber.

53

Test 6
In order to verify that the system conform with the requirements set in chapter 3 on
page 19 tests were conducted. Each test will verify a requirement and the results of all
the tests will be summarized in the end.

6.1 Test setups

Test 1-4 each have their own node setup. Meanwhile, test 5 and 6 uses the node setups
found in section 2.3 on page 10.

6.2 Test of Requirements

A number of tests will be run, in order to be able to verify that the requirements are
fulfilled. How each test is performed will be described, as well as the success criteria and
results.

6.2.1 Test of Requirement 1

The testbed should measure packet loss, delay, jitter, and throughput.

The requirement will be tested by deploying the testbed and sending some packets from
on node to another.

The test steps are:

1) Turn on the Raspberry Pis with the golden image.

2) Deploy testbed.

3) Send packets between two nodes.

4) Attempt to determine packet loss.

5) Attempt to determine delay.

6) Attempt to determine jitter.

7) Attempt to determine throughput.

The test will be deemed a success if the attempts to calculate metrics are successful.

55

Group 19gr352 6. Test

Results

In practice, the Raspberry Pis were set up with the topology shown in figure 6.1 though
TQ (Transmission Quality) fluctuates a little from the labels on the edges.

10:6f:3f:eb:63:d1

c4:3d:c7:80:b9:f6

1.393

10:6f:3f:eb:63:98

1.181
4c:e6:76:f1:84:9e

3.148

10:6f:3f:eb:63:90

1.109

10:6f:3f:eb:63:ce

1.594

2.107

2.277
2.056 1.256

4.250

6.892

10:6f:3f:eb:5a:c2

1.689
1.614

1.903

1.328

2.107

1.735
1.783

1.564

1.848

Figure 6.1: Actual test 1 setup with increased text size for relevant TQs.

All tests where done using the blue node (10:6f:3f:eb:5a:c2) as the source node
while attempting to send data to the green node (4c:e6:76:f1:84:9e), yellow node
(10:6f:3f:eb:63:90), and red node (c4:3d:c7:80:b9:f6).

The SQL query in section 6.2.1 is used to find packets from a source, $src, to a destination,
$dst.

1 SELECT s.id, d.id, s.timestamp, d.timestamp, s.data FROM
batman_testbed_schema.metrics s JOIN batman_testbed_schema.metrics d
ON s.data ->> 'meta_hash' = d.data ->> 'meta_hash'

↪→

↪→

2 WHERE s.test_id = 52221
3 AND d.test_id = 52221
4 AND d.timestamp > (s.timestamp - INTERVAL '1 sec')
5 AND d.timestamp < (s.timestamp + INTERVAL '1 sec')
6 AND s.node_mac = $src
7 AND (s.data ->> 'dst' = $dst)
8 AND d.node_mac = s.data ->> 'dst'
9 ORDER BY s.timestamp, d.timestamp

Snippet 37: SQL query used to find packets from a source to a destination

The query returns metrics which match the following:

• Metrics seen by $src and received by $dst.

• Metric received by $dst within one second from when it is seen by $src.

This highlights possible problems with the way packets are captured. The query currently
captures packets seen by $src, and thus also packets which are forwarded by it. Because
the BATMAN unicast packet used for transferring data does not contain a destination
field, it is impossible to check if a packet was sent by $src.

56

6.2. Test of Requirements Aalborg University

When running this query on the chosen nodes it was discovered that only packets to and
from node 4c:e6:76:f1:84:9e were present. This may be because of the following issues:

• According to collected metrics and figure 6.1 on the facing page, the blue node had
a very poor connection to red node.

• Timestamps may not have been in sync between some nodes.

From now on, the test will use the one hop link between the blue and the green node
for testing packet loss, throughput and jitter. Test packets were generated using the the
ping tool, batctl throughput meter and iperf3. The associated commands that were run
on each node can be seen in appendix F on page 87.

Packet loss can be measured by counting the total number of packets from $src to $dst
and subtract the number of packets actually received by $dst. This count is calculated
for each minute and plotted results in figure 6.2.

0 5 10 15 20 25 30 35
Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

ac
ke

ts
 lo

st

From src to dst
From dst to src

Figure 6.2: Packet loss measured from captured metrics.

It can be concluded that it is possible to measure packet loss, but not whether the given
results are correct. To validate results, it would have been beneficial to use tool which
reports packet loss.

57

Group 19gr352 6. Test

Throughput can be measured by summing up the length of packets received at $dst.
Figure 6.3 shows the throughput for each minute in the test.

0 5 10 15 20 25 30 35
Time (minutes)

0

20000

40000

60000

80000

100000

120000

Th
ro

ug
hp

ut
 (b

yt
es

)

From src to dst
From dst to src

Figure 6.3: Throughput measured from captured metrics.

It can be concluded that it is possible to measure throughput, but again it is difficult to
validate these results.

The throughput peaks at 120 000 bytes per minute, which is 2 KB/s. This is much lower
than the iperf3 reported throughput of around 7.22 KB/s, but fits well with the batctl
reported throughput of 2.99 KB/s.

Jitter can be measured by finding difference between the maximum and minimum delay.
Analyzing the data showed a jitter of 996 ms from $src to $dst and a jitter of 998 ms
from $dst to $src as the worst cases over the span of the whole test.

These results do not correspond to measured jitter from other works as mentioned in
section 2.2 on page 7, which may indicate an issue with timestamps. It is therefore
possible to measure jitter but maybe with wrong results.

Delay is found as a prerequisite to jitter and it has the same worries about correctness.

Summary Because of the ’hard to verify’ results and only being able to capture traffic
between two single hop nodes, this requirement is deemed partially fulfilled.

58

6.2. Test of Requirements Aalborg University

6.2.2 Test of Requirement 2

The testbed should store the measured metrics persistently.

The requirement will be tested by inserting data in the database and restarting the deploy
node running the database.

The test steps will be:

1) Insert data into database.

2) Reboot the node with database.

3) Look at data.

The success criteria of this test is that the data still exists on the database after restart.

Results

The amount of rows (entries) in the database, before reboot, can be seen in figure 6.4.

Figure 6.4: Data entries before node reboot.

The amount of rows in the database, after reboot, can be seen in figure 6.5. Additional
entries have been inserted, because the database receives data again immediately after the
reboot.

Figure 6.5: Database test 2

This requirement is deemed fulfilled, since the database persists all the data after a
shutdown.

6.2.3 Test of Requirement 3

The testbed should have adjustable link quality between nodes.

This will be tested by having two nodes connected using BATMAN, and testing their link
quality. Then the link quality is decreased and again tested, to verify a difference. The
node setup can be seen in figure 6.6 on the next page.

59

Group 19gr352 6. Test

Node 2Node 1

Figure 6.6: Test 3 setup.

The test steps will be:

1) Connect two raspberry pis wireless, using BATMAN.

2) Test link quality.

3) Decrease link quality.

4) Test link quality again, and compare.

It is possible to decrease the txpower (transmission power) on the Wi-Fi modules on
the Raspberry Pis, which should reduce the link quality. This can be done by using
SSH to one Raspberry Pi on the network and executing the iwconfig <interface>
txpower <val>dBm command. Interface in this command is the Wi-Fi interface used
for BATMAN. Txpower is changed with ’val’, which is a value between 0 and 20, where
20 is the default and maximum. The current value can be seen by executing iwconfig
wlan0. The hypothesis is that by decreasing , link quality worsens.

An example of this command is: $ iwconfig wlan0 txpower 15dBm

The test is a success if the link quality decreases after it is changed.

Results

Upon testing this requirement it was found that changing the txpower on the Buffalo
Wi-Fi modules created unexpected results. At first the txpower was set to 15 on one of
the nodes, and it was immediately apparent that this was too low. By using the batctl
neighbors command on the node with adjusted txpower, it could not see any other nodes
on the network. Additionally, when using SSH to interface with another node and using
the same batctl command, they could not see the txpower-adjusted node either. It seemed
adjusting the txpower caused either little effect or broke the connection.

Given the hardware that was used for the development of the testbed it was found that it
was not possible to change the link quality satisfactorily. As such, this requirement was
not fulfilled, however with other hardware it might prove possible to do so.

6.2.4 Test of Requirement 4

The testbed should have assisted deployment.

This is tested by having three Raspberry Pis with the golden image, and deploying the
battracker. Thereafter changing the configuration of the battracker to store locally instead
of sending to remote host.

60

6.2. Test of Requirements Aalborg University

The node setup can be seen in figure 6.7.

Node 1 Node 2 Node 3

Figure 6.7: Test 4 setup.

The test steps will be:

1) Make a configuration change, in this instance making the tracker use the local cache
output module.

2) Deploy the changed configuration on Raspberry Pis with the golden image.

3) Let the test run for 5 minutes.

4) Retrieve locally stored files.

The test is a success if all Raspberry Pis have a locally stored file containing updated
data.

Results

It was possible to modify the configuration file that makes the tracker use the local cache
output module. Hereafter, the test was run for approximately 5 minutes and the files were
retrieved from the Raspberry Pis. All nodes contained a file with updated data of the
test, which means that this requirement was fulfilled.

6.2.5 Test of Requirement 5

All scenarios in section 2.3 on page 10 should be able to be carried out on the testbed.

This will be tested by recreating the scenarios, found in section 2.3 on page 10, and testing
whether or not they are possible with this testbed.

The test steps for each scenario will be:

1) Attempt to recreate scenario.

2) Determine if it is possible to measure the relevant metrics of the scenario.

For testing this requirement a general test setup was prepared at Niels Jernes Vej to carry
out all three scenarios. A combination of the httpplotter topology and an overview of the
test building is shown in figure 6.8 on the next page.

61

Group 19gr352 6. Test

PI 5

PI 7

PI 3

PI 9

PI 6

PI 10

10:6f:3f:eb:5a:c2

4c:e6:76:f1:84:9e

10:6f:3f:eb:63:d1

10:6f:3f:eb:63:90

10:6f:3f:eb:63:98

10:6f:3f:eb:63:ce

Figure 6.8: General setup, with links between nodes visualised.

This test is a success if all the scenarios are possible.

Results

Best Route. As is evident from the results of testing requirement 3 in section 6.2.3 on
page 59, it was not possible to achieve asymmetric adjustable link quality either. As such,
it was not possible to test this scenario.

Convergence Speed
This scenario aims to test BATMAN’s ability to change the route, if one link in that route
is broken. This was done by choosing a node with multiple routes to a destination node,
breaking the best route and measuring how fast a new route is converged upon. The
chosen nodes were those with MAC adresses: 10:6f:3f:eb:5a:c2 (PI 5) as originator
node and 10:6f:3f:eb:63:98 (PI 10) as destination node. One node on the route to the
destination node must then be turned off, so BATMAN can find an alternative one. This
node was chosen to be 10:6f:3f:eb:63:98 (PI 9).

In order to trace the route that a packet would take through the network the batctl tr
<MAC> command was executed. When given a valid MAC address as a destination on the
network, it prints out a table in which a packet would travel to that destination. This
command is executed on the originator node over SSH.

Executing # batctl tr 10:6f:3f:eb:63:98 on PI 5 gave the output seen in snippet 38
on the next page.

62

6.2. Test of Requirements Aalborg University

1 # batctl tr 10:6f:3f:eb:63:98
2 traceroute to 10:6f:3f:eb:63:98 (10:6f:3f:eb:63:98), 50 hops max, 20 byte

packets↪→

3 1: 4c:e6:76:f1:84:9e 5.425 ms 0.741 ms 0.458 ms
4 2: 10:6f:3f:eb:63:90 14.083 ms 1.466 ms 1.444 ms
5 3: 10:6f:3f:eb:63:98 * 3.165 ms 2.310 ms

Snippet 38: batctl tr executed on PI 10:6f:3f:eb:5a:c2 (PI 5) showing before turning off
10:6f:3f:eb:63:90 (PI 9).

This output in snippet 38 shows three packets traveling the same route through the
network, with their latency. It is also seen that the route that these packets took three
hops, and the MAC addresses of the nodes it traveled through, with the last one being
the destination. The ’*’ represents a packet loss.

This route can be visualised as shown in figure 6.9

PI 5

PI 7

PI 3

PI 9

PI 6

PI 10

10:6f:3f:eb:5a:c2

4c:e6:76:f1:84:9e

10:6f:3f:eb:63:d1

10:6f:3f:eb:63:90

10:6f:3f:eb:63:98

10:6f:3f:eb:63:ce

Figure 6.9: Original best route for 10:6f:3f:eb:5a:c2 (PI 5) to 10:6f:3f:eb:63:ce (PI 10).

After turning off 10:6f:3f:eb:63:90 (PI 9) a new route should be chosen. The same
command was executed again on the originator node and its output can be seen in
snippet 39 on the following page.

63

Group 19gr352 6. Test

1 # batctl tr 10:6f:3f:eb:63:98
2 traceroute to 10:6f:3f:eb:63:98 (10:6f:3f:eb:63:98), 50 hops max, 20 byte

packets↪→

3 1: 4c:e6:76:f1:84:9e 10.222 ms 7.047 ms 0.915 ms
4 2: 10:6f:3f:eb:63:ce 6.649 ms 9.809 ms 7.379 ms
5 3: 10:6f:3f:eb:63:d1 8.446 ms 21.526 ms 22.713 ms
6 4: 10:6f:3f:eb:63:98 5.359 ms 58.083 ms 12.382 ms

Snippet 39: batctl tr executed on PI 10:6f:3f:eb:5a:c2 (PI 5) showing after turning off
10:6f:3f:eb:63:90 (PI 9).

In figure 6.10 this new route is shown.

PI 5

PI 7

PI 3

PI 6

PI 10

10:6f:3f:eb:5a:c2

4c:e6:76:f1:84:9e

10:6f:3f:eb:63:d1

10:6f:3f:eb:63:98

10:6f:3f:eb:63:ce

Figure 6.10: New route from 10:6f:3f:eb:5a:c2 (PI 5) to 10:6f:3f:eb:63:ce (PI 10).

This proves that it is possible to enact the convergence speed scenario.

The topology of the network can be seen on appendix D on page 83 as created by
httpplotter.

Mobility
Testing the movement scenario, one node was selected to be moved from one
place to another. This node to be moved was decided to be the node with
MAC address 10:6f:3f:eb:5a:c2 (PI 5). Using the batctl ping <MAC> from node
10:6f:3f:eb:63:ce (PI 10) to the moving node, it was possible to track when the moving
node was disconnected and reconnected, after being moved. The movement of the moving
node can be seen in figure 6.11 on the next page.

64

6.2. Test of Requirements Aalborg University

PI 7

PI 3

PI 9

PI 6

PI 10

4c:e6:76:f1:84:9e

10:6f:3f:eb:63:d1

10:6f:3f:eb:63:90

10:6f:3f:eb:63:98

10:6f:3f:eb:63:ce

PI 5

10:6f:3f:eb:5a:c2

Figure 6.11: Moving 10:6f:3f:eb:5a:c2 (PI 5) to a new location, with updated link(s).

This change in movement can also be seen when looking on the network topology from
batadv-vis in figure 6.11.

10:6f:3f:eb:63:90

10:6f:3f:eb:63:ce

1.149

10:6f:3f:eb:63:d1

1.518

10:6f:3f:eb:63:98

1.932

4c:e6:76:f1:84:9e

1.483

1.711

2.179

1.518

1.294

1.417

1.624

1.545

1.821

1.220

10:6f:3f:eb:5a:c2

1.138

1.555

Figure 6.12: Topology before moving 10:6f:3f:eb:5a:c2 (PI 5).

65

Group 19gr352 6. Test

10:6f:3f:eb:5a:c2

10:6f:3f:eb:63:d1

1.483

4c:e6:76:f1:84:9e

1.527

2.361

10:6f:3f:eb:63:90

1.509

10:6f:3f:eb:63:ce

1.574

10:6f:3f:eb:63:98
1.564

1.349

1.085

2.865

1.214

3.000

1.711
1.220

1.356

2.406

1.809

1.275

Figure 6.13: Topology after moving 10:6f:3f:eb:5a:c2 (PI 5).

It can be seen in figure 6.12 on the previous page and figure 6.13, that the links have
adjusted to the new placement of the moving node. In figure 6.13 a one-way link is
visible between the nodes 4c:e6:76:f1:84:9e and 10:6f:3f:eb:5a:c2. This does not
mean that there is a one way communication between them, but because the node, which
the batadv-vis data is from, still thinks that 10:6f:3f:eb:5a:c2 can see the other. This
ultimately has no effect on the performance of the network, as this is a batadv-vis drawback
and eventually corrects itself.

It can be concluded that the mobility test scenario is possible.

Summary of test 5
This requirement is partially fulfilled. The Convergence Speed and Mobility tests were
successful, however since the requirement from section 6.2.3 on page 59 is not fulfilled, the
Best Route scenario could not be recreated.

6.2.6 Test of Requirement 6

The results of carrying out the scenarios on the testbed should be replicable.

This will be tested by using the same procedure as 6.2.5 again, however only after the
testbed has been torn down.

This test is a success if all the scenarios gives the same results as in 6.2.5.

Results

The testbed was not torn down and set back up, for this requirement to be tested. This
was mostly due to lack of resources. However, the convergence scenario was conducted

66

6.2. Test of Requirements Aalborg University

twice, and the results did not deviate significantly. Having results that do not deviate
significantly was how replicability was defined in section 2.5 on page 16. Keeping in mind
that a full tear down and set up was not performed, this requirement is deemed partially
fulfilled.

6.2.7 Test of Requirement 7

The testbed should collect the local BATMAN state of nodes, using existing tools.

This will be tested by deploying the testbed. Then the batctl input module will collect
neighbour table, and originator table and save the data.

The test steps for each scenario will be:

1) Deploy testbed.

2) Have a test run for 5 minutes.

3) Look in the database.

This test is a success if valid neighbor/originator table data are inserted into the database
from each node.

Results

These two input modules were run simultaneously with the other input modules, and were
set to send every second. It was possible to parse the output of the batctl neighbor and
originator commands and format it as JSON to be stored in the database. An example of
an originator table in the database can be seen in snippet 40 and an example of a neighbor
table can be seen in snippet 41 on the next page.

1 {
2 "10:6f:3f:eb:5a:c2": {"nexthop": {"4c:e6:76:f1:84:9e": 155}, "last-seen":

1.44},↪→

3 "10:6f:3f:eb:63:90": {"nexthop": {"10:6f:3f:eb:63:90": 199,
"4c:e6:76:f1:84:9e": 110}, "last-seen": 0.67},↪→

4 "10:6f:3f:eb:63:98": {"nexthop": {"10:6f:3f:eb:63:90": 60,
"4c:e6:76:f1:84:9e": 0}, "last-seen": 0.09},↪→

5 "10:6f:3f:eb:63:ce": {"nexthop": {"10:6f:3f:eb:63:90": 35}, "last-seen":
2.17},↪→

6 "10:6f:3f:eb:63:d1": {"nexthop": {"4c:e6:76:f1:84:9e": 129}, "last-seen":
0.91},↪→

7 "4c:e6:76:f1:84:9e": {"nexthop": {"10:6f:3f:eb:63:90": 123,
"4c:e6:76:f1:84:9e": 224}, "last-seen": 0.34}↪→

8 }

Snippet 40: An example of an originator table as JSON.

67

Group 19gr352 6. Test

1 {
2 "neighbors": ["c4:3d:c7:80:b9:f6", "10:6f:3f:eb:5a:c2",

"10:6f:3f:eb:63:98", "4c:e6:76:f1:84:9e"]↪→

3 }

Snippet 41: An example of a neighbor table as JSON.

It was found possible to retrieve data of the node’s local state and the requirement can
therefore be deemed fulfilled.

6.3 Summary of tests

The test results are collected in a table and can be seen in table 6.1.

Requirement Result
1 The testbed should measure packet loss, delay, jitter, and

throughput.
Partially fulfilled

2 The testbed should store the measured metrics persistently. Fulfilled
3 The testbed should have adjustable link quality between nodes. Not fulfilled
4 The testbed should have assisted deployment. Fulfilled
5 All scenarios in 2.3 should be able to be carried out on the

testbed.
Partially fulfilled

6 The results of carrying out scenarios on the testbed should be
replicable.

Partially fulfilled

7 The testbed should collect the local BATMAN state of nodes,
using existing tools.

Fulfilled

Table 6.1: Results of all tests.

68

Discussion 7
Whilst analyzing the data of the various tests it was evident that tests of the requirements
needed to be conducted again. However, due to lack of resources this was not possible
which meant this did not happen.

One of the faults that was found was that time synchronization was not achieved amongst
the nodes. This could have been due to the usage of the pcap library in the packet capture
input module as seen in section 5.3 on page 40. It was found that libpcap buffers packets to
deliver them in bulk, which means that the time stamped by the tracker is not necessarily
the time the packets were received [49]. This could have been avoided if the timestamps
provided by libpcap were used instead.

During the design of the system (chapter 4 on page 21) it was found that time
synchronization would be necessary for it to work. This time synchronization was meant
to be achieved through the secondary channel. Therefore two access points were set up,
which the nodes could connect to and get synchronized time with the other nodes on
the network. However, if a node was not able to reach the secondary network to get
synchronized the system would not detect it. Therefore, examination on how to better
monitor nodes through the secondary channel should have been implemented. This would
increase the ease of deploying the testbed and running tests.

In regards to deploying the system, Ansible was chosen as the deployment tool. This
was chosen due to experience and the knowledge of its capabilities which were deemed
as satisfactory for the testbed. Be that as it may, similar tools that have the same
functionalities as Ansible exists, and it could be beneficial to investigate the potential of
using a different deployment tool. It should be mentioned that no flaws of Ansible were
found during the development of the system.

Another output module was developed that could solve the lack of a secondary channel
called the local cache input module. It was intended to be used as an alternative if no
secondary channel were available, to test whether the tracknet interfered with the batnet,
and to be used as a failover in case that a node temporarily lost connection to the tracknet
and the tracker’s buffer gets full. The latter implementation was never realized due to
its low priority, however if further development were to be made on the testbed this
functionality would be recommended to avoid packets to be lost due to bad Wi-Fi signal.
Furthermore, another functionality that was not implemented but considered, was one
that could ease the retrieval of local cache files and their insertion into the database.

The testbed was developed with the intent to also accommodate the newer version of the
BATMAN protocol called BATMAN V. BATMAN V was never tested and it is therefore

69

Group 19gr352 7. Discussion

unknown if this version would work on the testbed. Furthermore, one of the reasons for
not testing BATMAN V is because it was suspected that batadv-vis would not provide
correct TQ values due to an old unresolved feature request of exactly this [50]. batadv-vis
was found to be a valuable tool when combined with httpploter, due to the fact that
during tests it was easy to debug and have a live overview of how the network acted.

Therefore, it might have been beneficial to allocate more resources to the implementation
and extension of existing tools such as batadv-vis and batctl. This could potentially have
allowed for better functionalities of the testbed, but packet metrics were prioritized. This
prioritization was done because the potential yield of the data is higher if the raw data
is analyzed, compared to data being limited by existing tools. Consequently this meant
that the usage of some of the tools in this system was unsatisfactory. For instance, the
output of batctl and batadv-vis are often unchanged from the previous output. It seems
trivial to implement a feature such that these outputs are only sent when it has changed
and an effort was started to do so. However, it was not completed since bugs that requires
comprehensive tests to reproduce were discovered.

Other pain points of the testbed are that making changes to the golden image requires
reflashing memory cards which takes a while. A solution to this would be the network boot,
but this would require adequate hardware. Furthermore, a solution for cross-compilation
of the tracker software was not found, which would have allowed for compiling the software
on the deploy node and it being executable on the nodes. In hindsight it would have been
easier if the deploy node was chosen with the same architecture as other nodes. This means
source code is transferred to a node, compiled, transferred back, and then sent out to all
other nodes via Ansible. Therefore, it could be valuable to investigate the possibility of
cross-compilation. Moreover, it could also be beneficial to have static compilation, which
would mean that the nodes would not have dependencies managed by Ansible.

Lastly, user experience was mostly disregarded in terms of deployment and the tracker.
While it is expected of the scientist to be familiar with CLIs (Command Line Interface),
it would be nice to implement a proper CLI. For instance such that the tracker prints
instructions instead of segfaulting when presented with an unexpected argument.

70

Conclusion 8
Wireless ad-hoc networks could possibly be both an alternative and an addition to the
internet. However, one of the big issues with these types of networks is the routing of
data. One potential solution to this problem is BATMAN. In order to aid the research of
BATMAN at Aalborg University a testbed was developed. This gave the final problem
statement:

"How can a testbed be made for measuring packet loss, delay, jitter, and throughput of
the BATMAN under open-mesh’s- and potentially additional routing scenarios at Aalborg
University?"

It was found that all metrics could be calculated, although they may be incorrect since
it appeared from tests that proper timestamping is not implemented correctly. Three out
of four of selected open-mesh’s scenarios could be recreated. This was done by using an
automated deployment system, which works well, to configure nodes in combination with
a program that serves live overviews of the network topology.

While performing open-mesh’s scenarios, a tracker program sends metrics to a remote
host where metrics are further processed and inserted in a database. Given that the
timestamping issue gets fixed and more packet header data is collected, metrics can be
used in combination with manually executed programs to calculate additional metrics and
generate insight about BATMAN. Not just packet loss, delay, jitter, and throughput, but
also:

• The given network topology at any time;

• any local BATMAN state;

• BATMAN’s convergence speed;

• BATMAN’s ability to select the best route;

• BATMAN’s ability to converge on a new route after a previous route has been
broken;

• BATMAN’s ability to handle mobile nodes.

While several solutions to adjust link quality of the nodes were examined it was not
managed to do satisfactorily. As such, one of Open-mesh’s scenarios could not be
recreated. It also follows that this testbed might be unfit for Aalborg University to recreate

71

Group 19gr352 8. Conclusion

Open-mesh’s scenarios due to requirements for physical space, which is not necessarily
available in a lab setting.

In conclusion, a testbed that fulfills all set requirements was not created, but it is quite
possible that this testbed is a good starting point for further development towards fulfilling
all the requirements.

72

Bibliography

[1] andre. Freifunk - Free and Open Wireless Community Networks. 2016-08. url:
https://www.emfcamp.org/schedule/2016/236- freifunk- free-and-open-wireless-
community-networks.

[2] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich. Better Approach To Mobile
Ad-hoc Networking (B.A.T.M.A.N.) Draft. 2008-03. url: https://tools. ietf .org/
html/draft-openmesh-b-a-t-m-a-n-00.

[3] B.A.T.M.A.N. url: https://wiki.freifunk-franken.de/w/B.A.T.M.A.N. (visited on
2020-11-10).

[4] About the Battle of the Mesh Organisers. url: https : / /www . battlemesh . org /
AboutUs (visited on 2020-11-10).

[5] Freifunk. url: https://wiki.p2pfoundation.net/Freifunk (visited on 2020-11-10).
[6] B.A.T.M.A.N. V. url: https://www.open-mesh.org/projects/batman-adv/wiki/

BATMAN_V (visited on 2020-10-16).
[7] Marek Lindner and Simon Wunderlich. B.A.T.M.A.N meshing protocol kconfig.

2020. url: https : / / github . com / open - mesh - mirror / batman - adv / blob /
f2a2e0310dc1c570bdd1439553e897649b000292 / net / batman - adv / Kconfig # L26
(visited on 2020-10-14).

[8] Linus Lüssing and Marek Lindner. bat_v_elp.c. 2020. url: https://github.com/
open-mesh-mirror/batman-adv/blob/f2a2e0310dc1c570bdd1439553e897649b000292/
net/batman-adv/bat_v_elp.c (visited on 2020-10-14).

[9] Originator Message version 2 (OGMv2). url: https : / / www . open - mesh . org /
projects/batman-adv/wiki/Ogmv2 (visited on 2020-10-16).

[10] “IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture”. In: IEEE Std 802-2014 (Revision to IEEE Std 802-2001) (2014),
pp. 1–74. doi: 10.1109/IEEESTD.2014.6847097.

[11] B.A.T.M.A.N. advanced. url: https ://www.open-mesh .org/projects/batman-
adv/wiki/Wiki (visited on 2020-10-22).

[12] Tweaking B.A.T.M.A.N. Advanced. url: https://www.open-mesh.org/projects/
batman-adv/wiki/Tweaking (visited on 2020-10-16).

[13] E. Kulla, M. Hiyama, M. Ikeda, and L. Barolli. “Comparison of Experimental Results
of a MANET Testbed in Different Environments Considering BATMAN Protocol”.
In: 2011 Third International Conference on Intelligent Networking and Collaborative
Systems. 2011, pp. 1–7.

[14] Leonard Barolli, Makoto Ikeda, Giuseppe De Marco, Arjan Durresi, and Fatos Xhafa.
“Performance Analysis of OLSR and BATMAN Protocols Considering Link Quality
Parameter”. In: 2009 International Conference on Advanced Information Networking
and Applications (2009). doi: 10.1109/aina.2009.28.

73

https://www.emfcamp.org/schedule/2016/236-freifunk-free-and-open-wireless-community-networks
https://www.emfcamp.org/schedule/2016/236-freifunk-free-and-open-wireless-community-networks
https://tools.ietf.org/html/draft-openmesh-b-a-t-m-a-n-00
https://tools.ietf.org/html/draft-openmesh-b-a-t-m-a-n-00
https://wiki.freifunk-franken.de/w/B.A.T.M.A.N.
https://www.battlemesh.org/AboutUs
https://www.battlemesh.org/AboutUs
https://wiki.p2pfoundation.net/Freifunk
https://www.open-mesh.org/projects/batman-adv/wiki/BATMAN_V
https://www.open-mesh.org/projects/batman-adv/wiki/BATMAN_V
https://github.com/open-mesh-mirror/batman-adv/blob/f2a2e0310dc1c570bdd1439553e897649b000292/net/batman-adv/Kconfig#L26
https://github.com/open-mesh-mirror/batman-adv/blob/f2a2e0310dc1c570bdd1439553e897649b000292/net/batman-adv/Kconfig#L26
https://github.com/open-mesh-mirror/batman-adv/blob/f2a2e0310dc1c570bdd1439553e897649b000292/net/batman-adv/bat_v_elp.c
https://github.com/open-mesh-mirror/batman-adv/blob/f2a2e0310dc1c570bdd1439553e897649b000292/net/batman-adv/bat_v_elp.c
https://github.com/open-mesh-mirror/batman-adv/blob/f2a2e0310dc1c570bdd1439553e897649b000292/net/batman-adv/bat_v_elp.c
https://www.open-mesh.org/projects/batman-adv/wiki/Ogmv2
https://www.open-mesh.org/projects/batman-adv/wiki/Ogmv2
https://doi.org/10.1109/IEEESTD.2014.6847097
https://www.open-mesh.org/projects/batman-adv/wiki/Wiki
https://www.open-mesh.org/projects/batman-adv/wiki/Wiki
https://www.open-mesh.org/projects/batman-adv/wiki/Tweaking
https://www.open-mesh.org/projects/batman-adv/wiki/Tweaking
https://doi.org/10.1109/aina.2009.28

Group 19gr352 Bibliography

[15] Elis Kulla, Masahiro Hiyama, Makoto Ikeda, and Leonard Barolli. “Performance
comparison of OLSR and BATMAN routing protocols by a MANET testbed in
stairs environment”. In: Computers & Mathematics with Applications 63.2 (2012).
Advances in context, cognitive, and secure computing, pp. 339–349. issn: 0898-1221.
doi: https://doi.org/10.1016/j.camwa.2011.07.035. url: http://www.sciencedirect.
com/science/article/pii/S089812211100589X.

[16] Jerry Chun-Ping Wang, Brett Hagelstein, and Mehran Abolhasan. “Experimental
Evaluation of IEEE 802.11s PathSelection Protocols in a Mesh Testbed”. In:
International Conference on Signal Processing and Communication Systems. Vol. 4.
IEEE, 2010-12, pp. 1–3.

[17] E. Chissungo, E. Blake, and H. Le. “Investigation into Batman-adv Protocol
Performance in an Indoor Mesh Potato Testbed”. In: 2011 Third International
Conference on Intelligent Networking and Collaborative Systems. 2011, pp. 8–13.

[18] K. Kiran, N. P. Kaushik, S. Sharath, P. D. Shenoy, K. R. Venugopal, and
V. T. Prabhu. “Experimental Evaluation of BATMAN and BATMAN-Adv Routing
Protocols in a Mobile Testbed”. In: TENCON 2018 - 2018 IEEE Region 10
Conference. 2018, pp. 1538–1543.

[19] J. Xu, L. Wang, Y. Li, Z. Qin, and M. Zhu. “An Experimental Study of BATMAN
Performance in a Campus Deployment of Wireless Mesh Networks”. In: 2011 Seventh
International Conference on Mobile Ad-hoc and Sensor Networks. 2011, pp. 341–342.

[20] P. Gupta and P. R. Kumar. “The capacity of wireless networks”. In: IEEE
Transactions on Information Theory 46.2 (2000), pp. 388–404.

[21] D. Seither, A. König, and M. Hollick. “Routing performance of Wireless Mesh
Networks: A practical evaluation of BATMAN advanced”. In: 2011 IEEE 36th
Conference on Local Computer Networks. 2011, pp. 897–904. doi: 10.1109/LCN.
2011.6115569.

[22] M. S. Singh and V. Talasila. “A practical evaluation for routing performance of
BATMAN-ADV and HWMN in a Wireless Mesh Network test-bed”. In: 2015
International Conference on Smart Sensors and Systems (IC-SSS). 2015, pp. 1–
6. doi: 10.1109/SMARTSENS.2015.7873617.

[23] Elis Kulla Makoto Ikeda, Tetsuya Oda, Leonard Barolli, Fatos Xhafa, and
Aleksander Biberaj Michael Keating. “Experimental results from a MANET
testbed in outdoor bridge environment considering BATMAN routing protocol”.
In: Computing. Ed. by Spring. Vol. 95. 2013, pp. 1073–1086. doi: https://doi.org/
10.1007/s00607-012-0225-9.

[24] Routing scenarios. url: https://www.open-mesh.org/doc/open-mesh/Routing_
scenarios.html (visited on 2020-10-19).

[25] Graphviz - Graph Visualization Software. url: https://www.graphviz.org/ (visited
on 2020-11-03).

[26] Marek Lindner. Translation table in a nutshell. url: https://www.open-mesh.org/
news/38 (visited on 2020-11-09).

74

https://doi.org/https://doi.org/10.1016/j.camwa.2011.07.035
http://www.sciencedirect.com/science/article/pii/S089812211100589X
http://www.sciencedirect.com/science/article/pii/S089812211100589X
https://doi.org/10.1109/LCN.2011.6115569
https://doi.org/10.1109/LCN.2011.6115569
https://doi.org/10.1109/SMARTSENS.2015.7873617
https://doi.org/https://doi.org/10.1007/s00607-012-0225-9
https://doi.org/https://doi.org/10.1007/s00607-012-0225-9
https://www.open-mesh.org/doc/open-mesh/Routing_scenarios.html
https://www.open-mesh.org/doc/open-mesh/Routing_scenarios.html
https://www.graphviz.org/
https://www.open-mesh.org/news/38
https://www.open-mesh.org/news/38

Bibliography Aalborg University

[27] batctl-0.2.x: Update README’s vis section. 2010-03-22. url: https://github.com/
open - mesh - mirror /batctl / commit / 15870b582afd781b41954b6621f523e9544f16d4
(visited on 2020-11-03).

[28] Simon Wunderlich. vis.c. 2020. url: https://github.com/open-mesh-mirror/alfred/
blob/dece44cf5626f921b5803273c8e05de7684fb6bf/vis/vis.c (visited on 2020-11-03).

[29] generic_netlink_howto. url: https : / / wiki . linuxfoundation . org / networking /
generic_netlink_howto (visited on 2020-11-09).

[30] A.L.F.R.E.D - Almighty Lightweight Fact Remote Exchange Daemon. url: https://
github.com/open-mesh-mirror/alfred/blob/112788d77f54f4779715d40485e2f17130631f51/
README.rst (visited on 2020-11-09).

[31] How NTP Works. url: https://www.eecis.udel.edu/~mills/ntp/html/warp.html
(visited on 2020-12-14).

[32] Introduction to Linux Traffic Control. url: https ://tldp .org/HOWTO/Traffic-
Control-HOWTO/overview.html (visited on 2020-12-17).

[33] Shweta Bhandare Sagar Sanghani Timothy X Brown and Sheetalkumar Doshi.
EWANT: The Emulated Wireless Ad Hoc Network Testbed. Tech. rep. 2003-03-16.
url: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1200667&tag=
1.

[34] Raspberry Pi documentation glossary. url: https : / / www . raspberrypi . org /
documentation/glossary/ (visited on 2020-12-17).

[35] Raspberry Pi 4 Computer Model B. url: https : / / static . raspberrypi . org /files /
product-briefs/Raspberry-Pi-4-Product-Brief.pdf (visited on 2020-12-17).

[36] A-Profile Architectures. url: https : / / developer . arm . com / architectures / cpu -
architecture/a-profile (visited on 2020-12-17).

[37] Raspberry Pi OS. url: https://www.raspberrypi .org/documentation/raspbian/
(visited on 2020-11-12).

[38] Network booting. url: https ://www.raspberrypi .org/documentation/hardware/
raspberrypi/bootmodes/net.md (visited on 2020-11-12).

[39] Automatic detection of hardware interface. url: https : / / bugs . debian . org / cgi -
bin/bugreport.cgi?bug=101728 (visited on 2020-11-12).

[40] Predictable Network Interface Names. url: https ://www.freedesktop.org/wiki/
Software/systemd/PredictableNetworkInterfaceNames/ (visited on 2020-11-12).

[41] systemd.net-naming-scheme — Network device naming schemes. url: https://www.
freedesktop.org/software/systemd/man/systemd.net-naming-scheme.html (visited
on 2020-11-17).

[42] Dnsmasq - network services for small networks. url: http://www.thekelleys.org.
uk/dnsmasq/doc.html (visited on 2020-11-12).

[43] hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS Authentica-
tor. url: https://w1.fi/hostapd/ (visited on 2020-11-12).

[44] Oleg Obleukhov. Building a more accurate time service at Facebook scale. 2020-03-18.
url: https://engineering.fb.com/2020/03/18/production-engineering/ntp-service/
(visited on 2020-12-13).

75

https://github.com/open-mesh-mirror/batctl/commit/15870b582afd781b41954b6621f523e9544f16d4
https://github.com/open-mesh-mirror/batctl/commit/15870b582afd781b41954b6621f523e9544f16d4
https://github.com/open-mesh-mirror/alfred/blob/dece44cf5626f921b5803273c8e05de7684fb6bf/vis/vis.c
https://github.com/open-mesh-mirror/alfred/blob/dece44cf5626f921b5803273c8e05de7684fb6bf/vis/vis.c
https://wiki.linuxfoundation.org/networking/generic_netlink_howto
https://wiki.linuxfoundation.org/networking/generic_netlink_howto
https://github.com/open-mesh-mirror/alfred/blob/112788d77f54f4779715d40485e2f17130631f51/README.rst
https://github.com/open-mesh-mirror/alfred/blob/112788d77f54f4779715d40485e2f17130631f51/README.rst
https://github.com/open-mesh-mirror/alfred/blob/112788d77f54f4779715d40485e2f17130631f51/README.rst
https://www.eecis.udel.edu/~mills/ntp/html/warp.html
https://tldp.org/HOWTO/Traffic-Control-HOWTO/overview.html
https://tldp.org/HOWTO/Traffic-Control-HOWTO/overview.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1200667&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1200667&tag=1
https://www.raspberrypi.org/documentation/glossary/
https://www.raspberrypi.org/documentation/glossary/
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-4-Product-Brief.pdf
https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-4-Product-Brief.pdf
https://developer.arm.com/architectures/cpu-architecture/a-profile
https://developer.arm.com/architectures/cpu-architecture/a-profile
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/net.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/net.md
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=101728
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=101728
https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/
https://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/
https://www.freedesktop.org/software/systemd/man/systemd.net-naming-scheme.html
https://www.freedesktop.org/software/systemd/man/systemd.net-naming-scheme.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://w1.fi/hostapd/
https://engineering.fb.com/2020/03/18/production-engineering/ntp-service/

Group 19gr352 Bibliography

[45] chrony.conf - chronyd configuration file. url: https://chrony.tuxfamily.org/doc/3.
4/chrony.conf.html (visited on 2020-12-11).

[46] Packet Types. url: https ://www.open-mesh .org/projects/batman- adv/wiki/
Packet-types (visited on 2020-12-08).

[47] ext4 General Information - The Linux Kernel documentation. url: https://www.
kernel.org/doc/html/v5.4/admin-guide/ext4.html (visited on 2020-12-16).

[48] PostgreSQL: Documentation: 11: 8.14. JSON Types. url: https://www.postgresql.
org/docs/11/datatype-json.html (visited on 2020-12-14).

[49] pcap - Packet Capture library. url: https://linux.die.net/man/3/pcap (visited on
2020-12-17).

[50] batadv-vis: Add support for B.A.T.M.A.N. V throughput. url: https://www.open-
mesh.org/issues/251 (visited on 2020-12-17).

76

https://chrony.tuxfamily.org/doc/3.4/chrony.conf.html
https://chrony.tuxfamily.org/doc/3.4/chrony.conf.html
https://www.open-mesh.org/projects/batman-adv/wiki/Packet-types
https://www.open-mesh.org/projects/batman-adv/wiki/Packet-types
https://www.kernel.org/doc/html/v5.4/admin-guide/ext4.html
https://www.kernel.org/doc/html/v5.4/admin-guide/ext4.html
https://www.postgresql.org/docs/11/datatype-json.html
https://www.postgresql.org/docs/11/datatype-json.html
https://linux.die.net/man/3/pcap
https://www.open-mesh.org/issues/251
https://www.open-mesh.org/issues/251

Additional test scenarios A

N1A B

N5

N2

N4

N8N7

alternative path between A and B

current best path between A and B

N3

N6

Figure A.1: Alternative to the expanded broken link setup. [24]

N1

A B

N5N2 N4

N6 N10N7 N9

N3

N8

N11N12

broken link

working link

previously selected path to A

OGM direction route direction

Figure A.2: Alternative to the expanded broken link setup. [24]

77

batadv-vis DOT output B
digraph {

subgraph "cluster_10:6f:3f:eb:64:06" {
"10:6f:3f:eb:64:06"

}
"10:6f:3f:eb:64:06" -> "c4:3d:c7:80:b9:f6" [label="1.037"]
"10:6f:3f:eb:64:06" -> "10:6f:3f:eb:63:98" [label="1.032"]
"10:6f:3f:eb:64:06" -> "be:6b:8d:a5:88:19" [label="TT"]
"10:6f:3f:eb:64:06" -> "33:33:ff:a5:88:19" [label="TT"]
"10:6f:3f:eb:64:06" -> "33:33:00:00:00:fb" [label="TT"]
"10:6f:3f:eb:64:06" -> "01:00:5e:00:00:01" [label="TT"]
"10:6f:3f:eb:64:06" -> "01:00:5e:00:00:fb" [label="TT"]
"10:6f:3f:eb:64:06" -> "33:33:00:00:00:01" [label="TT"]

}

79

batadv-vis DOT output C
digraph {

subgraph "cluster_c4:3d:c7:80:b9:f6" {
"c4:3d:c7:80:b9:f6"

}
"c4:3d:c7:80:b9:f6" -> "10:6f:3f:eb:63:98" [label="1.000"]
"c4:3d:c7:80:b9:f6" -> "10:6f:3f:eb:64:06" [label="1.049"]
"c4:3d:c7:80:b9:f6" -> "33:33:00:00:00:fb" [label="TT"]
"c4:3d:c7:80:b9:f6" -> "01:00:5e:00:00:01" [label="TT"]
"c4:3d:c7:80:b9:f6" -> "1a:fb:92:65:0e:94" [label="TT"]
"c4:3d:c7:80:b9:f6" -> "01:00:5e:00:00:fb" [label="TT"]
"c4:3d:c7:80:b9:f6" -> "33:33:ff:65:0e:94" [label="TT"]
"c4:3d:c7:80:b9:f6" -> "33:33:00:00:00:01" [label="TT"]
subgraph "cluster_10:6f:3f:eb:64:06" {

"10:6f:3f:eb:64:06"
}
"10:6f:3f:eb:64:06" -> "c4:3d:c7:80:b9:f6" [label="1.032"]
"10:6f:3f:eb:64:06" -> "10:6f:3f:eb:63:98" [label="1.054"]
"10:6f:3f:eb:64:06" -> "be:6b:8d:a5:88:19" [label="TT"]
"10:6f:3f:eb:64:06" -> "33:33:ff:a5:88:19" [label="TT"]
"10:6f:3f:eb:64:06" -> "33:33:00:00:00:fb" [label="TT"]
"10:6f:3f:eb:64:06" -> "01:00:5e:00:00:01" [label="TT"]
"10:6f:3f:eb:64:06" -> "01:00:5e:00:00:fb" [label="TT"]
"10:6f:3f:eb:64:06" -> "33:33:00:00:00:01" [label="TT"]

}

81

Convergence Speed
Topologies D

10:6f:3f:eb:63:98

10:6f:3f:eb:63:90

1.689

10:6f:3f:eb:63:d1

1.262

1.527

1.555

4c:e6:76:f1:84:9e

1.371

10:6f:3f:eb:63:ce

1.238

2.318

2.090

2.742

10:6f:3f:eb:5a:c2

1.536 2.056
1.288

1.364

1.735

3.072

1.527

Figure D.1: Before removing node

10:6f:3f:eb:63:98

10:6f:3f:eb:63:d1

1.356
1.747

10:6f:3f:eb:63:ce

1.386
10:6f:3f:eb:5a:c2 4c:e6:76:f1:84:9e

1.491

1.045

1.294

4.554

3.072

1.170

10:6f:3f:eb:63:90

1.848

1.903

1.209

1.214

Figure D.2: After removing node

83

Class Diagram Of Tracker E

85

Group 19gr352 E. Class Diagram Of Tracker

Metric

-string timeStamp;
-string MACaddress;

MetricHandler

+push(unique_ptr<Metric> m)

MetricBuffer

-deque<Metric *> m_queue;
-mutex m_lock;
-condition_variable m_cv;
-MetricHandler &m_next;

+MetricBuffer(MetricHandler &next)
+push(unique_ptr<Metric> m)
+operator()(int i)
+start()
-Metric *get()

PacketCapture

-MetricHandler &m_output;
-const char *m_interface;

+PacketCapture(MetricHandler &mOutput, const char *interface)
+start()

PacketMetric

-int m_type;
-uint8_t *m_header;
-size_t m_header_len;
-size_t m_full_len;
-uint32_t m_hash;

+get_name()
+get_data()

VisMetric

+get_name()
+get_data()

VisInput

-MetricHandler &m_next;

+VisInput(MetricHandler &next)
+start()

BatctlNeighbor

+get_name()
+get_data()

BatctlNInput

-MetricHandler &m_next;

+BatctlNInput(MetricHandler &next)
+start();

BatctlOriginator

+get_name()
+get_data()

BatctlOInput

-MetricHandler &m_next;

+BatctlOInput(MetricHandler &next)
+start();

MetricStamper

-MetricHandler &m_next;
-string m_interface_path;

+MetricStamper(MetricHandler &next, string macif)
+push(unique_ptr<Metric> m);
-get_time()
-get_mac()Interface

-string m_ip;
-string m_name;
-bool m_is_ipv6;

+Interface(string name, struct sockaddr *ip);
+get_name()
+get_ip()
+is_ipv6()
-parse_ip(struct sockaddr *ip)

IpAddrInput

-MetricHandler &m_next;

+IpAddrInput(MetricHandler &next)
+start()
-vector<Interface> fetch_interface()
-check_if_tracknet(string iface)

IpAddrMetric

-json m_j

+add_intf(Interface &iface, bool is_tracknet)
+get_name()
+get_data()

RemoteOut

-struct sockaddr_in m_addr;
-int m_socket;

+RemoteOut(string host, int port)
+push(unique_ptr<Metric> m)
-connect();
-reconnect(int tries)

CacheData

-ofstream file;

+push(unique_ptr<Metric> m)

Figure E.1: Class diagram of system

86

Commands F
F.1 Source node

1 pi@raspberrypi :~ $ ip a
2 1: lo: <LOOPBACK ,UP ,LOWER_UP > mtu 65536 qdisc noqueue state

UNKNOWN group default qlen 1000
3 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
4 inet 127.0.0.1/8 scope host lo
5 valid_lft forever preferred_lft forever
6 inet6 ::1/128 scope host
7 valid_lft forever preferred_lft forever
8 2: eth0: <NO -CARRIER ,BROADCAST ,MULTICAST ,UP > mtu 1500 qdisc

mq state DOWN group default qlen 1000
9 link/ether dc:a6 :32:82:34: e3 brd ff:ff:ff:ff:ff:ff

10 inet 10.46.0.11/24 brd 10.46.0.255 scope global eth0
11 valid_lft forever preferred_lft forever
12 3: wlan0: <BROADCAST ,MULTICAST ,UP ,LOWER_UP > mtu 1500 qdisc

pfifo_fast state UP group default qlen 1000
13 link/ether dc:a6 :32:82:34: e4 brd ff:ff:ff:ff:ff:ff
14 inet 192.168.1.42/24 brd 192.168.1.255 scope global wlan0
15 valid_lft forever preferred_lft forever
16 inet6 fe80::dea6 :32ff:fe82 :34e4/64 scope link
17 valid_lft forever preferred_lft forever
18 4: wlan1: <BROADCAST ,MULTICAST ,UP ,LOWER_UP > mtu 1532 qdisc mq

master bat0 state UP group default qlen 1000
19 link/ether 10:6f:3f:eb:5a:c2 brd ff:ff:ff:ff:ff:ff
20 inet6 fe80 ::126f:3fff:feeb:5ac2/64 scope link
21 valid_lft forever preferred_lft forever
22 5: bat0: <BROADCAST ,MULTICAST ,UP ,LOWER_UP > mtu 1500 qdisc

noqueue state UNKNOWN group default qlen 1000
23 link/ether 4a:75:0b:ac:be:53 brd ff:ff:ff:ff:ff:ff
24 inet 169.254.8.39/16 brd 169.254.255.255 scope link bat0:

avahi
25 valid_lft forever preferred_lft forever
26 inet6 fe80 ::4875: bff:feac:be53 /64 scope link
27 valid_lft forever preferred_lft forever
28

29 pi@raspberrypi :~ $ iperf3 -s -f K

87

Group 19gr352 F. Commands

30 ---
31 Server listening on 5201
32 ---
33 Accepted connection from 169.254.6.118 , port 54308
34 [5] local 169.254.8.39 port 5201 connected to 169.254.6.118

port 54310
35 [ID] Interval Transfer Bitrate
36 [5] 0.00 -1.00 sec 5.66 KBytes 5.66 KBytes/sec
37 [5] 1.00 -2.00 sec 5.66 KBytes 5.66 KBytes/sec
38 [5] 2.00 -3.00 sec 8.48 KBytes 8.48 KBytes/sec
39 [5] 3.00 -4.00 sec 8.48 KBytes 8.48 KBytes/sec
40 [5] 4.00 -5.00 sec 9.90 KBytes 9.90 KBytes/sec
41 [5] 5.00 -6.00 sec 7.07 KBytes 7.07 KBytes/sec
42 [5] 6.00 -7.00 sec 7.07 KBytes 7.07 KBytes/sec
43 [5] 7.00 -8.00 sec 0.00 Bytes 0.00 KBytes/sec
44 [5] 8.00 -9.00 sec 12.7 KBytes 12.7 KBytes/sec
45 [5] 9.00 -10.00 sec 7.07 KBytes 7.07 KBytes/sec
46 [5] 10.00 -10.97 sec 7.07 KBytes 7.28 KBytes/sec
47 -
48 [ID] Interval Transfer Bitrate
49 [5] 0.00 -10.97 sec 79.2 KBytes 7.22 KBytes/sec

receiver
50 ---
51 Server listening on 5201
52 ---

F.2 Destination node
1 pi@raspberrypi :~ $ ip a
2 1: lo: <LOOPBACK ,UP ,LOWER_UP > mtu 65536 qdisc noqueue state

UNKNOWN group default qlen 1000
3 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
4 inet 127.0.0.1/8 scope host lo
5 valid_lft forever preferred_lft forever
6 inet6 ::1/128 scope host
7 valid_lft forever preferred_lft forever
8 2: eth0: <NO -CARRIER ,BROADCAST ,MULTICAST ,UP > mtu 1500 qdisc

pfifo_fast state DOWN group default qlen 1000
9 link/ether b8:27:eb:f1:af:f2 brd ff:ff:ff:ff:ff:ff

10 inet 10.46.0.11/24 brd 10.46.0.255 scope global eth0
11 valid_lft forever preferred_lft forever
12 3: wlan0: <BROADCAST ,MULTICAST ,UP ,LOWER_UP > mtu 1500 qdisc

pfifo_fast state UP group default qlen 1000
13 link/ether b8:27:eb:a4:fa:a7 brd ff:ff:ff:ff:ff:ff
14 inet 192.168.1.53/24 brd 192.168.1.255 scope global wlan0
15 valid_lft forever preferred_lft forever

88

F.2. Destination node Aalborg University

16 inet6 fe80::ba27:ebff:fea4:faa7 /64 scope link
17 valid_lft forever preferred_lft forever
18 4: wlan1: <BROADCAST ,MULTICAST ,UP ,LOWER_UP > mtu 1532 qdisc mq

master bat0 state UP group default qlen 1000
19 link/ether 4c:e6:76:f1 :84:9e brd ff:ff:ff:ff:ff:ff
20 inet6 fe80 ::4ee6:76ff:fef1 :849e/64 scope link
21 valid_lft forever preferred_lft forever
22 5: bat0: <BROADCAST ,MULTICAST ,UP ,LOWER_UP > mtu 1500 qdisc

noqueue state UNKNOWN group default qlen 1000
23 link/ether 5e:b3 :47:63: a1:1b brd ff:ff:ff:ff:ff:ff
24 inet 169.254.6.118/16 brd 169.254.255.255 scope link bat0

:avahi
25 valid_lft forever preferred_lft forever
26 inet6 fe80 ::5cb3:47ff:fe63:a11b /64 scope link
27 valid_lft forever preferred_lft forever
28

29 pi@raspberrypi :~ $ sudo batctl ping 10:6f:3f:eb:5a:c2
30 PING 10:6f:3f:eb:5a:c2 (10:6f:3f:eb:5a:c2) 20(48) bytes of

data
31 20 bytes from 10:6f:3f:eb:5a:c2 icmp_seq =1 ttl=50 time =3.76

ms
32 20 bytes from 10:6f:3f:eb:5a:c2 icmp_seq =2 ttl=50 time =2.06

ms
33 --- 10:6f:3f:eb:5a:c2 ping statistics ---
34 2 packets transmitted , 2 received , 0% packet loss
35 rtt min/avg/max/mdev = 2.056/2.908/3.759/0.852 ms
36 ^Cpi@raspberrypi :~ $ sudo batctl tr 10:6f:3f:eb:5a:c2
37 traceroute to 10:6f:3f:eb:5a:c2 (10:6f:3f:eb:5a:c2), 50 hops

max , 20 byte packets
38 1: 10:6f:3f:eb:5a:c2 10.781 ms 63.305 ms 35.904 ms
39 pi@raspberrypi :~ $ sudo batctl tp 10:6f:3f:eb:5a:c2
40 Test duration 10110ms.
41 Sent 30996 Bytes.
42 Throughput: 2.99 KB/s (24.52 Kbps)
43

44

45 pi@raspberrypi :~ $ iperf3 -c 169.254.8.39 -f K
46 Connecting to host 169.254.8.39 , port 5201
47 [5] local 169.254.6.118 port 54310 connected to

169.254.8.39 port 5201
48 [ID] Interval Transfer Bitrate Retr

Cwnd
49 [5] 0.00 -1.00 sec 39.6 KBytes 39.6 KBytes/sec 0

14.1 KBytes
50 [5] 1.00 -2.00 sec 0.00 Bytes 0.00 KBytes/sec 0

14.1 KBytes

89

Group 19gr352 F. Commands

51 [5] 2.00 -3.00 sec 45.2 KBytes 45.3 KBytes/sec 0
14.1 KBytes

52 [5] 3.00 -4.00 sec 0.00 Bytes 0.00 KBytes/sec 0
17.0 KBytes

53 [5] 4.00 -5.00 sec 0.00 Bytes 0.00 KBytes/sec 0
17.0 KBytes

54 [5] 5.00 -6.00 sec 0.00 Bytes 0.00 KBytes/sec 0
17.0 KBytes

55 [5] 6.00 -7.00 sec 0.00 Bytes 0.00 KBytes/sec 0
17.0 KBytes

56 [5] 7.00 -8.00 sec 0.00 Bytes 0.00 KBytes/sec 2
5.66 KBytes

57 [5] 8.00 -9.00 sec 45.2 KBytes 45.3 KBytes/sec 0
11.3 KBytes

58 [5] 9.00 -10.00 sec 0.00 Bytes 0.00 KBytes/sec 0
11.3 KBytes

59 -
60 [ID] Interval Transfer Bitrate Retr
61 [5] 0.00 -10.00 sec 130 KBytes 13.0 KBytes/sec 2

sender
62 [5] 0.00 -10.97 sec 79.2 KBytes 7.22 KBytes/sec

receiver
63

64 iperf Done.

90

	Front page
	Title page
	Nomenclature
	Contents
	Preface
	1 Introduction
	1.1 Mesh Networks
	1.2 Assessing BATMAN
	1.3 Initial Problem Statement

	2 Problem Analysis
	2.1 Introduction to BATMAN
	2.2 Related Work
	2.3 Test Scenarios
	2.4 batadv-vis and alfred
	2.5 Desired Capabilities
	2.6 Final Problem Statement

	3 Requirement Specification
	4 Design
	4.1 Network
	4.2 Deploy Node
	4.3 Golden Image
	4.4 Tracker
	4.5 Clock Synchronization
	4.6 Link Quality
	4.7 Summary

	5 Implementation
	5.1 Hardware
	5.2 Deployer
	5.3 Battracker
	5.4 Deblobber & Storage
	5.5 Visualizer

	6 Test
	6.1 Test setups
	6.2 Test of Requirements
	6.3 Summary of tests

	7 Discussion
	8 Conclusion
	Bibliography
	A Additional test scenarios
	B batadv-vis DOT output
	C batadv-vis DOT output
	D Convergence Speed Topologies
	E Class Diagram Of Tracker
	F Commands
	F.1 Source node
	F.2 Destination node

